一般定量关系将细胞生长和大肠杆菌中的1个细胞周期联系起来2 3 hai zheng 1,2, *,Yang bai 1, *,介于江1, *,taku A. tokuyasu 1,xiongliang huang 1,2 Terence HWA 4,Chenli Liu 1,2,+ 5 6 1 Cas Cas Key定量工程生物学实验室,深圳合成生物学研究所,深圳市综合生物学研究所,中国科学院高级技术学院7分子和蜂窝生物学,哈佛大学,剑桥,马萨诸塞州02138,美国10 4物理系,U.C.圣地亚哥,拉霍亚,加利福尼亚州92093-0374,美国11 12 *同等贡献13 +可以解决该信件。电子邮件:cl.liu@siat.ac.cn 14 15关键词:细菌细胞周期,细胞大小,细胞分裂,DNA复制,细菌生理学16 17从细胞群体研究中出现的生长法规定,对全球的18个机制提供了基本的限制,该机制是协调细胞生长1-3的全球机制。基于在大肠杆菌中进行的19项广泛的工作,细菌细胞周期研究的基础依赖于20年前提出的两个相互联系的教条:将细胞质量与生长速率1相关的SMK生长法,以及Donachie对21种增长速率不依赖于21个不依赖于增长率的起始开始质量4。这些教条刺激了许多努力,以了解其22个分子基础和生理后果5-14。虽然在快速增长的23制度中普遍接受,即在低于一小时以下的两倍时,这些教条延长至慢速增长24制度从未始终如一地实现。通过大肠杆菌细胞25周期的定量生理研究在广泛的增长率上,我们在这里报告说,在26个慢速或快速增长的方案中,教条均未举行。在他们的稳定下,细胞质量与27个染色体复制/隔离的速率之间的线性关系显示在所有生长速率上都是有效的。这28个关系导致我们提出了一个整体阈值模型,其中细胞周期由29个许可过程控制,其速率以简单的方式与染色体动力学相关。这些结果30为预测理解细胞生长细胞周期关系提供了定量基础。31
刘氏研究小组的研究兴趣涵盖各种材料的设计、制造、表征和模拟,包括具有异质表面和界面的膜、薄膜、涂层和多孔电极,以及用于储能和转换的装置,如燃料电池、电池、电解器和超级电容器。我们的主要重点是了解这些材料的结构、成分和形态如何影响它们的电气、化学、催化和电化学性质,特别是沿表面、跨界面和通过复杂多孔结构的电荷和质量转移。我们小组致力于开发创新策略和材料,旨在提高化学和能源转化过程的效率和成本效益。我们的研究涵盖合成和制造技术、原位/操作表征方法和多尺度建模方法。我们的总体目标是系统地设计具有独特功能的材料和结构,以提高储能和转换效率。
国际能源局预测,电动汽车(EV)将在未来的可持续运输选择中发挥关键作用。电动汽车提供了许多优势,包括高能效率[1,2],低环境影响和高驾驶性能[3]。在印度尼西亚,能源和矿产资源部(MEMR)负责为电动汽车进行必要的基础设施准备。根据2020年的MEMR条例,该法规涉及电池电动汽车(BEVS)的电气充电基础设施的提供,该部有权监督所选城市中充电设施和电动汽车电池交换站的建设。此外,MEMR有权签发电力提供业务许可,并指定符合条件的业务领域,例如加油站,办公室,购物中心或停车场。截至2021年7月,EVS在135个地点上有166个充电站(SPKLU),主要在Java岛,而74