氢是地球上数量最多、最简单的元素。它可以储存和释放可用能量。然而,氢并不单独存在于自然界中,必须由包含它的不同元素制成。例如,它可以与碳(如石油、天然气)和水中的氧(H 2 O)结合[1]。氢的每千克比能量是所有燃料中最高的(即 120-140 MJ/kg),但其能量密度不太适合储存(即 2.8-10 MJ/L),具体取决于物理储存方式(如压缩(350-700 bar)、液体)[2]。一方面,全球利用重整工艺从天然气、煤炭和石油中生产的氢气约占 96%。另一方面,利用水电解工艺将去离子水分解为氢气和氧气约占全球氢气产量的 4% [3]。尽管氢气本质上是一种清洁的能源,但它需要能量来生产;所采用的能源类型有所不同。由化石燃料生产的氢气由于间接污染而被称为灰氢。为了供应水电解过程,可再生能源 (RES)(例如风力涡轮机、光伏)是最适合的,因为它们可以限制对环境的影响。通过这种方式,可以获得所谓的绿色氢气。将这种氢气混合到现有的天然气管道网络中已被提议作为增加可再生能源系统产量的一种手段。通过管道输送氢气和甲烷混合物也有悠久的历史;最近,风电装机容量的快速增长以及对燃料电池电动汽车近期市场准备的关注,增加了利益相关者的兴趣 [ 4 , 5 ]。
通过应用适当的振幅和参数的电场脉冲来提高膜渗透率。此方法称为“电抛液”或“电穿孔”(EP)。使用EP应用,在正常细胞条件下无法穿越膜的颗粒可以通过膜。强烈和短期的电脉冲导致细胞膜上的跨膜电位(TMP)上升(1-5)。当TMP达到临界值时,水孔的形成将允许通过膜进行分子过渡。尽管无法完全表达分子水平的精确机制,但在观察到最高TMP的膜区域已经证明了分子流量(6-8)。EP的有效性取决于应用的电脉冲参数(持续时间,强度脉冲形状和脉冲数)。基于这些参数的影响,EP可以是可逆的或不可逆的(9-11)。可逆EP在医学和生物技术领域中有许多应用,包括电疗疗法和电化学疗法(ECT)(5,12)。不可逆的EP用于肿瘤消融(由于其非热作用)和灭菌目的(11-13)。
藻酸盐是一种从棕色藻类中提取的自然存在的生物聚合物,它提出了一种有希望的途径,用于开发可持续和效率的废水处理膜。本综述全面研究了基于藻酸盐的膜在制造,修饰和应用有效的水纯净方面的最新进展。纸张研究了各种制造技术,包括铸造,静电纺丝和3D打印,这些印刷不存在所得藻酸盐膜的结构和功能特性。为提高性能,采用了交联,掺入诸如诸如效果,并且采用了表面功能化。这些修改优化了至关重要的特性,例如机械强度,孔隙率,选择性和防毒性抗性。此外,响应表面方法论(RSM)已成为系统地优化制造参数的宝贵工具,使研究人员能够确定达到所需膜特性的最佳条件。将藻酸盐膜与生物处理过程的整合,例如植物修复(利用微藻)和霉菌修复(采用真菌),提供了一种协同方法,以增强废水处理能力。通过将这些微生物固定在藻酸盐基质中,它们的生物修复能力得到扩增,从而改善了污染物降解和营养去除。总而言之,基于藻酸盐的膜表现出显着的潜力,作为废水处理的可持续和有效技术。持续的研究和开发,重点是优化制造过程,并与生物系统探索创新的整合策略,将进一步推动藻酸膜膜在应对水污污染的全球压力挑战时的应用。
1 俄罗斯农场动物遗传育种研究所 - LK Ernst 联邦畜牧业研究中心分部,普希金,196601 圣彼得堡,俄罗斯 2 俄罗斯科学院圣彼得堡联邦研究中心西北粮食安全问题跨学科研究中心,普希金,196608 圣彼得堡,俄罗斯 3 肯特大学自然科学学院,CT2 7NJ 坎特伯雷,英国 4 动物基因组学和生物资源研究组(AGB 研究组),农业大学理学院,乍都乍,10900 曼谷,泰国 5 LK Ernst 联邦畜牧业研究中心,杜布罗维齐,波多利斯克,142132 莫斯科州,俄罗斯 *通讯地址:dementevan@mail.ru (Natalia V. Dementieva);m.romanov@kent.ac.uk (Michael N. Romanov)
1 IPO-PORTO研究中心(CI-IPOP)/RISE@CI-IPOP(健康研究网络),葡萄牙PORTO(IPO-PORTO)/PORTO COMPO CAMPORAGIES CANCE RAQUEL SERUCA(PORTO.CCC RAFEL SERUCA,PORTO,PORTUGAL,PORTUGAL,PORTUGAL; 2葡萄牙波尔图大学医学与生物医学科学学院Abel Salazar(ICBAS); 3芬兰图尔库大学生物医学研究所和药品研究实验室; 4 Turku Bioscience,Turku University andÅboAkademi大学,芬兰Turku; 5 Infumes Research旗舰店,芬兰图尔库大学,芬兰特区; 6葡萄牙波尔图市费尔南多·佩索阿大学卫生学院; 7葡萄牙波尔图(IPO-porto)免疫学系,葡萄牙波尔图; 8葡萄牙波尔图(IPO-porto),葡萄牙波尔图的葡萄牙肿瘤学研究所手术系; 9 Glycomatters Biotech,Espinho,葡萄牙1 IPO-PORTO研究中心(CI-IPOP)/RISE@CI-IPOP(健康研究网络),葡萄牙PORTO(IPO-PORTO)/PORTO COMPO CAMPORAGIES CANCE RAQUEL SERUCA(PORTO.CCC RAFEL SERUCA,PORTO,PORTUGAL,PORTUGAL,PORTUGAL; 2葡萄牙波尔图大学医学与生物医学科学学院Abel Salazar(ICBAS); 3芬兰图尔库大学生物医学研究所和药品研究实验室; 4 Turku Bioscience,Turku University andÅboAkademi大学,芬兰Turku; 5 Infumes Research旗舰店,芬兰图尔库大学,芬兰特区; 6葡萄牙波尔图市费尔南多·佩索阿大学卫生学院; 7葡萄牙波尔图(IPO-porto)免疫学系,葡萄牙波尔图; 8葡萄牙波尔图(IPO-porto),葡萄牙波尔图的葡萄牙肿瘤学研究所手术系; 9 Glycomatters Biotech,Espinho,葡萄牙
膜技术被视为一种环保且可持续的方法,在解决高能耗丙烯/丙烷分离过程中产生的大量能源损失方面具有巨大潜力。寻找用于这种重要分离的分子筛膜引起了极大的兴趣。在这里,一种氟化金属有机骨架 (MOF) 材料被称为 KAUST-7(KAUST:阿卜杜拉国王科技大学),具有明确的窄 1D 通道,可以根据尺寸筛分机制有效区分丙烯和丙烷,成功地被掺入聚酰亚胺基质中以制造分子筛混合基质膜 (MMM)。值得注意的是,KAUST-7 纳米粒子的表面功能化具有卡宾部分,可提供制造分子筛 MMM 所需的界面相容性,同时聚合物-填料界面的非选择性缺陷最少。具有高 MOF 负载(高达 45 wt.%)的最佳膜显示出 ≈ 95 barrer 的丙烯渗透率和 ≈ 20 的混合丙烯/丙烷选择性,远远超过了最先进的上限。此外,所得膜在实际条件下表现出坚固的结构稳定性,包括高压(高达 8 bar)和高温(高达 100°C)。观察到的出色性能证明了表面工程对于制备和合理部署用于工业应用的高性能 MMM 的重要性。
PKH67绿细胞膜标记试剂盒使用专有的膜标记技术稳定地融入了带有长脂肪型尾巴(PKH67)的绿色荧光染料中,并将其纳入细胞膜的脂质区域。套件(稀释剂C)中提供的标记缓冲液是一种水溶液,旨在保持细胞活力,同时在标记步骤中最大化染料溶解度和染色效率。稀释剂C对哺乳动物细胞是同性渗透性的,不含洗涤剂或有机溶剂,但也缺乏生理盐和缓冲液。根据标记的细胞类型,标记的细胞的出现可能从明亮,均匀到点状或斑点变化。
自从 20 世纪 50 年代末和 60 年代初反渗透 (RO) 和超滤 (UF) 作为实用单元操作而发展以来,它们的应用范围一直在不断扩大。最初,反渗透应用于海水和咸水的淡化。工业界对节水、降低能耗、控制污染和从废水中回收有用材料的需求不断增加,使得新的应用具有经济吸引力。此外,生物技术和制药领域的进步,加上膜开发的进步,使膜成为重要的分离步骤,与蒸馏相比,膜可以节省能源,并且不会导致产品热降解。