这项研究评估了四种情况下聚合物电解质膜燃料电池(PEMFC)的废热的利用:热量和功率组合(CHP),合并的冷却,加热和功率(CCHP),合并的冷却和功率(CCP),以及与有机兰克(Orc Cyce)一起产生有机的电力(ORC)。该方法涉及热力学建模和参数分析,以评估能源效率,节省燃料和环境影响。CCHP方案表明,总体系统效率最高,为87%,可节省46%的燃料和降低55%的CO₂排放量。ORC方案利用废物来发电,可实现41%的电效率,总体效率为68%,节省了26%的燃料和49%的CO₂排放量。这项研究表明,整合CCHP系统在能源,环境和经济指标之间提供了卓越的性能。这些发现通过优化废物恢复,减少排放并根据消费者需求和运营条件提供量身定制的解决方案来促进可持续能源系统。
Majed Modaresi 1,†,+,‡,Ryosuke Sugiyama 2,3,4,†,Nhan Dai Thien Tram 2,†,Roman P. Jakob 1,Chin-Soon Phan 2,Chin-soon-phan 2,§§ 1,Preston Shi Yang Long 2,Phillipe A Lehner 1,Zhen Heng Lim 2,Morris Degen 1,Ziwei Yao 2,Timm Maier 1,Timm Maier 1,Yuxin Hou 2,Jia Ying Lee 2,Jian Xu 2,Jian Xu 2,Jian Xu 2,Andrew Yeo Jung Yeat 2,Andrew Yeo Jung Yeat 2,Kenny Ting Sween Koh 2,Kenny Ting Koh 2,Wei Yi Yag Youg Yang Yang 2,Share ling Y. Chua 5,Mami Yamazaki 3,4,Pui Lai Rachel EE 2,*,Sebastian Hiller 1*和Brandon I Morinaka 2,*
塑料使用,在这种情况下,包括塑料饮用水瓶,特别是聚对苯二甲酸酯(PET),导致了巨大的环境,社会,经济和健康的影响。它最终将存放在垃圾填埋场中,每个瓶子最多需要1000年才能降解。本评论首先简要介绍了PET的组成和特征。然后详细介绍将废物宠物转换为有价值的材料的方法。评论强调了这些材料在水处理中的先进用途,突出了强大的,有机溶剂耐药性膜的发展。这篇综述的主要目的是评估对膜瓶回收为膜技术的最新研究,宠物废物中的膜制造,基于宠物的膜的应用,将宠物废物用于膜制造的优势和挑战。关键字:瓶子;塑料;宠物;回收;废物
引言锂离子电池因其出色的能量密度、工作电压、循环寿命和自放电率而成为便携式电子设备的首选。为了提高性能和安全性,开发用于电动/混合动力汽车和储能系统的创新型电池组件至关重要 [1]。目前,大多数商用锂离子电池使用微孔聚烯烃膜作为隔膜,因为它们具有电化学稳定性和机械强度。然而,这些膜具有孔隙率低和电解质润湿性差等局限性,这会对电池的性能产生负面影响。此外,微孔聚烯烃膜在高温下表现出高热收缩率,这引发了安全问题 [2-4]。*通讯作者。电子邮件:m.javaheri@merc.ac.ir
采用多种高性能纤维织物制造轻量化、高强度的复合材料是织物的发展趋势,本文基于复合材料结构性能一体化设计原理,以高强度高模量的芳纶纤维和低密度高韧性的PBO纤维作为增强材料,以碳纤维材料作为改性材料,采用RTM成型工艺制备了多种层合结构的CF-ANF-PBO超混杂三维复合材料,根据ANF/PBO体积分数设计了不同混杂结构的织物复合材料,并研究了不同混杂结构复合材料的力学性能。结果表明:当ANF/PBO体积分数达到100%时,未改性条件下复合材料的拉伸模量和强度最大,分别为68.81 GPa和543.02 MPa,而加入碳纤维改性后拉伸模量和强度分别为73.52 GPa和636.82 MPa,拉伸模量和拉伸强度性能总体改善分别为6.8%和17.27%,可以看出碳纤维的加入明显改善了芳纶和PBO纤维复合材料的性能。
6。Pedachenko E.等。“聚集指数与具有再生潜力的外周血细胞数量之间的相关性分离有助于预期寿命和胶质母细胞瘤的增加”。在线神经与脑疾病杂志13(2021):1-7。
产品特性 聚酰亚胺是一种强度和耐热性优异的超级工程塑料,其应用范围广泛,从电视、智能手机、汽车到航空航天。宇部兴产是全球唯一一家从原材料联苯四甲酸二酐 (BPDA) 到清漆、薄膜和粉末实现一体化生产的制造商。我们的原材料和专有的成型和加工技术使我们能够生产出具有竞争优势的产品。我们的聚酰亚胺在大型显示器的芯片薄膜 (COF) 应用中占有很高的市场份额,在柔性有机发光二极管基板的清漆中也占有很高的市场份额。我们还生产结合了聚酰亚胺中空纤维的气体分离膜(请参阅
背景:非转移性肌肉浸润性尿路上皮膀胱癌(MIBC)的预后较差,护理标准(SOC)包括基于新辅助顺铂的化学疗法(NAC)与膀胱切除术相结合。接受NAC的患者与单独的膀胱切除术相比,总体生存率的最多<10%。这个主要的临床问题强调了我们对抵抗机制的理解和对可靠的临床前模型的需求。鸡肉胚胎绒毛膜膜膜(CAM)代表了免疫功能低下的小鼠的快速,可扩展且具有成本效益的替代方法,用于在体内建立患者衍生的异种移植物(PDX)。cam- PDX利用易于获得的植入支架和富含血管的,免疫抑制的环境,用于植入PDX肿瘤和随后的功能研究。方法:我们使用CAM-PDX模型优化了原发性MIBC肿瘤的植入条件,并在基于顺铂的化学疗法反应之间进行了一致性,对患者的化学疗法反应与使用免疫组织化学标志物相结合的PDX肿瘤对PDX肿瘤进行了匹配。我们还使用肿瘤生长测量方法和对增殖标记物的免疫检测,KI-67测试了CAM-PDX上抗化疗的膀胱癌的精选激酶抑制剂反应。结果:我们的结果表明,在CAM上生长的原发性,耐NAC的MIBC肿瘤具有组织学特征 - 以及基于顺铂的基于顺铂的化学疗法耐药性,可在诊所观察到匹配的父母人类肿瘤标本。结论:我们的数据表明,基于顺铂的化学疗法抗性表型与原发性患者肿瘤和CAM-PDX模型之间的一致性。患者肿瘤标本成功地植入了CAM上,并显示出对双重EGFR和HER2抑制剂治疗的肿瘤生长大小和增殖的降低,但对CDK4/6或FGFR抑制没有明显的反应。此外,蛋白质组知情的激酶抑制剂在MIBC CAM-PDX模型上使用了新型治疗剂的快速体内测试的整合,从而为更复杂的细胞前小鼠PDX实验提供了更为有效的临床试验设计,旨在为具有有限治疗选择的患者提供最佳的精确药物。
膜转运蛋白对药物处置,功效和安全性的影响现在已得到充分认可。自从国际运输商联盟的首次出版物以来,在了解转运蛋白的作用和功能以及在评估和预测转运蛋白介导的活性,毒性和药物 - 药物相互作用(DDIS)方面取得了重大进展。值得注意的进步包括对固有和外部因素对转运蛋白活性的影响的了解,基于生理的药代动力学建模在预测转运蛋白介导的药物介入中的应用,内源性生物标记物在评估转运蛋白介导的DDIS的鉴定以及SLC和ABC的Cryogen Electon Mircopy结构的确定。本文概述了这些关键发展,强调了未解决的问题,监管考虑和未来的方向。