虚拟(3 月 22 日);上午 10 点至下午 2 点,Zoom Room 10;下午 3 点至 7 点,Zoom Room 9 海报:3 月 23 日,晚上 7 点至 9 点;现场(圣地亚哥会议中心 C 展厅)和虚拟(虚拟会议室)
在此情况下,我们最近建议使用四钌取代的多金属氧酸盐 (POM) Na 10 [Ru IV 4 ( β -OH) 2 ( µ -O) 4 (H 2 O) 4 ( γ -SiW 10 O 36 ) 2 ] (Ru 4 POM),它作为聚合物膜的防污剂表现出独特的行为。[3,4] POM 是 Mo、W 和 V 等金属的最高氧化态下的过渡金属氧化物。它们具有广泛的结构拓扑和多功能的化学和物理特性,特别是在催化应用方面[5],并且可以集成到广泛的功能支架 [6] 和薄膜中。[7] Ru 4 POM 具有突出的氧活性,这可以在水氧化过程中观察到[8],以及 H 2 O 2 催化歧化为 H 2 O 和 O 2 的过程中。 [9] 后一种过程很容易实现,不需要使用外部光/电触发器,也不需要调节 pH 值或温度,因此,只要将 Ru 4 POM 集成到小型设备或膜中,就可以很容易地利用它产生氧气泡。[10] 这些代表了一种有用的机械剂,有助于去除不可逆的污垢颗粒,也就是那些对传统膜清洗有抵抗力的颗粒,这些颗粒会堵塞膜孔并使其重复使用更加困难。在将 POM 嵌入聚合物基质的可能策略中[11],我们之前已经利用了所谓的表面活性剂包覆 POM(SEP)[12],通过反阳离子交换,旨在用长的两亲性四烷基铵链取代钠阳离子。具体来说,i)二甲基十八烷基铵 (DODA) 用于促进 Ru4 POM 在 CHCl3 中的溶解度,并允许与聚醚醚酮 (PEEK-WC) 形成合适的聚合物共混物;[3] ii)可聚合阳离子丙烯酰氧十一烷基三乙基铵 (AUTEA) 用作 POM 反离子和可聚合双连续微乳液 (PBM) 的组分,后者用作多孔聚醚砜 (PES) 膜表面的功能涂层。 [4] 然而,尽管具有良好的自清洁性能,尤其是对于后一种系统,但用于制备这些 SEP 的阳离子仍然很昂贵。在此,我们探索了使用埃洛石纳米管 (HNT) 作为支架,从而为该领域提供不同的视角
摘要:金刚石中的色心在量子技术中被广泛探索为量子比特。然而,在设备异质结构中有效和高效地集成这些金刚石承载的量子比特方面仍然存在挑战。在这里,通过“智能切割”和同位素(12C)纯化过度生长合成了纳米级厚度的均匀金刚石膜。这些膜具有可调的厚度(显示为 50 至 250 纳米),是确定性可转移的,具有双边原子平坦表面(R q ≤ 0.3 纳米)和块状金刚石结晶度。色心是通过注入和原位过度生长掺入来合成的。在 110 纳米厚的膜内,单个锗空位(GeV − )中心在 5.4 K 下表现出稳定的光致发光,平均光学跃迁线宽低至 125 MHz。单个氮空位 (NV − ) 中心的室温自旋相干性显示 Ramsey 自旋失相时间 ( T 2 * ) 和 Hahn 回波时间 ( T 2 ) 分别长达 150 和 400 μ s。该平台可将承载相干色心的金刚石膜直接集成到量子技术中。关键词:金刚石、色心、量子信息科学、异质结构、量子传感
标准 3 mm x 3 mm x 0.25 mm 单晶光学级金刚石基底(Element Six,≤ 1 ppm [N])用于膜合成。首先将它们精抛光至表面 Rq ≤ 0.3 nm(Syntek LLC.),以尽量减少形态不一致(见图 S1 (a))。接下来,用 150 keV 的 4 He + 离子(CuttingEdge Ions LLC.)注入样品,以在 ≈ 410 nm 深度处形成石墨化层。这是在 7 ° 的入射角下完成的,以避免离子沟道。剂量设置为 5 × 10 16 cm − 2,略高于石墨化阈值,以尽量减少晶体损伤(见第 1.5 节)。在本研究中,注入后采用了三步退火工艺:400 °C 浸泡 8 小时,然后在 800 °C 浸泡 8 小时,最后在 1200 °C 退火 2 小时。1 该过程在合成气体环境中完成(Ar:H 2 为 96:4)。注入和退火对表面粗糙度没有负面影响(见图 S1 (b))。通过室温拉曼光谱研究了膜形成过程中碳键的相变(见第 2.2 节)。
摘要:膜是化学净化、生物分离和海水淡化的关键部件。传统的聚合物膜普遍存在渗透性和选择性之间的权衡,这严重阻碍了分离性能。纳米多孔原子薄膜(NATM),如石墨烯 NATM,有可能打破这种权衡。由于其独特的二维结构和潜在的纳米孔结构可控性,NATM 有望通过分子筛获得出色的选择性,同时实现极限渗透性。然而,石墨烯膜的概念验证演示和可扩展的分离应用之间存在巨大的选择性差异。在本文中,我们提供了一种可能的解决方案来缩小这种差异,即通过两次连续的等离子体处理分别调整孔密度和孔径。我们证明,通过缩小孔径分布,可以大大提高石墨烯膜的选择性。首先应用低能氩等离子体来使石墨烯中高密度缺陷成核。然后利用受控氧等离子体选择性地将缺陷扩大为具有所需尺寸的纳米孔。该方法具有可扩展性,制备的具有亚纳米孔的 1 cm 2 石墨烯 NATM 可以分离 KCl 和 Allura Red,选择性为 104,磁导率为 1.1 × 10 −6 ms −1 。NATM 中的孔可以进一步从气体选择性亚纳米孔调整到几纳米尺寸。制备的 NATM 在 CO 2 和 N 2 之间的选择性为 35。随着扩大时间的延长,溶菌酶和牛血清白蛋白之间的选择性也可以达到 21.2,渗透性比商用透析膜高出大约四倍。这项研究提供了一种解决方案,可以实现孔径可调的 NATM,其孔径分布较窄,适用于从气体分离或脱盐中的亚纳米到透析中的几纳米的不同分离过程。关键词:纳米多孔石墨烯膜、纳米多孔原子级薄膜 (NATM)、蛋白质选择性膜、等离子蚀刻、纳米孔工程
缺乏用于非水电的膜的膜,会限制有机氧化还原流细胞中的细胞容量和循环寿命。使用可溶性,稳定的材料,我们试图比较可使用市售的微孔分离器和离子选择性膜可以实现的最佳性能。我们使用具有证明稳定性的有机物种,以避免由于材料降解而导致的分频和/或细胞失衡而导致的反应能力褪色。我们发现了生命周期和库仑效率之间的权衡:非选择性的分离器的性能更稳定,但具有低库仑效率,而离子选择性膜的效率低,而离子选择性膜可实现高库仑的效率,但会随着时间的推移而经历能力损失。当骑自行车前混合电解质时,库仑效率仍然很高,但是由于细胞不平衡而导致的容量损失,可以通过电解质重新平衡来恢复。这项研究的结果强调了可以通过合适的膜可以实现的非水细胞性能增益的潜力。
1 Wetsus,欧洲可持续水技术卓越中心,荷兰8911 Ma Leeuwarden; ragne.parnamae@wetsus.nl(R.P.); Jan.post@wetsus.nl(J.P。); Michel.saakes@wetsus.nl(M.S.)2 Dipartimento di Ingegneria,Universit - Degli Studi di Palermo,Viale Delle Scienze Ed。6,90128意大利巴勒莫; andrea.culcasi@unipa.it(A.C。); Alessandro.tamburini@unipa.it(A.T。)3 Aquabattery B.V.,Lijnbaan 3C,2352 CK Leiderdorp,荷兰; janwillem.vanegmond@aquabattery.nl(W.J.V.E.); jiajun.cen@aquabattery.nl(J.C。); emil.goosen@aquabattery.nl(例如); David.vermaas@aquabattery.nl(D.A.V.)4伦敦帝国学院,伦敦化学工程系,南肯辛顿校园,伦敦SW7 2AZ,英国5号化学工程系,代尔夫特技术大学,范德尔·马斯维格大学,荷兰范德尔·马斯维格9,2629 HZ DELFT ); Michele.tedesco@wetsus.nl(M.T。)4伦敦帝国学院,伦敦化学工程系,南肯辛顿校园,伦敦SW7 2AZ,英国5号化学工程系,代尔夫特技术大学,范德尔·马斯维格大学,荷兰范德尔·马斯维格9,2629 HZ DELFT); Michele.tedesco@wetsus.nl(M.T。)
项目历史 更薄的膜和替代催化剂有望提高 PEM 电解器的稳定运行和效率。该项目提高了材料性能并将组件集成在一起,同时利用基本特性来理解和突破设计极限。
电子束光刻:根据应用,将电子束光刻胶 (950K PMMA A4,MicroChem) 旋涂至 270 nm-330 nm 的厚度。接下来,在顶部热蒸发 20 nm Au 的导电层,以避免光刻过程中电荷积聚。为了进一步减轻充电效应,我们使用了相对较低的束电流 (0.3 nA)、多通道曝光 (GenISys BEAMER) 和减少电子束在一个区域持续停留时间的写入顺序。光刻胶的总曝光剂量为 1200 uC/cm2,电压为 100 kV (Raith EBPG5000 plus)。曝光后,我们用 TFA 金蚀刻剂 (Transene) 去除导电层,并在 7 C 的冷板上将光刻胶置于 1:3 MIBK:IPA 溶液中显影 90 秒,然后用 IPA 封堵 60 秒,再用 DI 水冲洗。原子层沉积:在进行 ALD 之前,我们在 ICP RIE 工具 (PlasmaTherm Apex) 中使用 10 sccm O2 和 50 W ICP 功率进行三秒等离子曝光,以去除残留聚合物。使用此配方,PMMA 蚀刻速率约为 2.5 nm/s。对于 TiO 2 沉积,我们使用商用热 ALD 室 (Veeco/Cambridge Savannah ALD)。使用四(二甲酰胺)钛 (TDMAT) 和水在 90 C 下沉积非晶态 TiO 2,交替脉冲分别为 0.08 秒和 0.10 秒。沉积期间连续流动 100 sccm N 2,前体脉冲之间的等待时间为 8 秒。沉积速率通常为 0.6 A/循环。 ICP 蚀刻程序:我们通过氯基 ICP RIE 蚀刻(PlasmaTherm Apex)去除过填充的 TiO 2,基板偏压为 150 W,ICP 功率为 400 W,Cl 2 为 12 sccm,BCl 为 8 sccm。蚀刻速率通常为 1.5-1.7 nm/s。SEM 成像:在 5 nm Cr 导电层热沉积后,使用 Carl Zeiss Merlin FE-SEM 对纳米光子结构进行成像。FDTD 模拟:使用 Lumerical 有限差分时域软件模拟环形谐振器、光子晶体腔和光栅耦合器。透射光谱:我们使用自制的共焦显微镜装置,该装置具有独立的收集和激发通道,以进行透射光谱。脉冲超连续源 (430-2400 nm,SC-OEM YSL Photonics) 和光谱仪 (1200 g/mm,Princeton Instruments) 用于宽带测量。为了对单个腔体谐振进行高分辨率扫描,我们使用 50 kHz 线宽、可调 CW 激光器 (MSquared) 进行激发,并使用雪崩光电二极管 (Excelitas) 进行检测。金刚石膜:通过离子轰击 34 生成 500 nm 厚的金刚石膜,并在阿贡国家实验室通过化学气相沉积进行覆盖。在对离子损伤层进行电化学蚀刻后,去除悬浮膜并用 PDMS 印章翻转。然后使用 ~500 nm 的 HSQ 抗蚀剂将它们粘附到 Si 载体上,并在氩气中以 420 C 的温度退火 8 小时。最后,使用 ICP 蚀刻法将膜蚀刻至所需厚度,蚀刻气体为 25 sccm Ar、40 sccm Cl2、400 W ICP 功率和 250 W 偏压功率。蚀刻速率通常为 1.2-1.4nm/s。