制定区域电网安全、可靠和经济运行的政策;通过区域电力委员会对五个区域电网进行综合运行、控制和协调;监督中央部门项目的份额交付;区域内和区域间电力交换;紧急电力援助;每日和每月的能源核算;负荷发电平衡和电网扰动研究;电网规范;大规模发电和输电的关税原则;农村电气化监测;配电网优化;与加速电力发展和改革计划(APDRP)有关的工作,包括 100% 计量、能源核算、效益评估、质量控制;与电力部门电信有关的事项;电信数据采集和软件支持火力发电站的运行监控和性能审查,更新维护程序;发电数据收集;性能分析;维护监控等。
(4)配电许可证持有者应在相应季度结束后的三十天内向委员会提交季度报告,报告内容应包括配电许可证持有者在相关季度向州政府提出的补贴要求的详细信息,该要求基于州政府宣布的补贴类别和消费者类别的每单位补贴的能源消耗情况、根据该法第 65 条实际支付的补贴、应付和已付补贴的缺口以及委员会和/或电力部根据《2003 年电力法》的规定制定的规则可能指定的其他相关细节。如果不遵守规定,委员会可以指示许可证持有者对许可证持有者的有关官员采取适当的行动。
主要活动:管理服务对 MD 平台的访问,包括合同问题。选择过程将优先考虑开发用于罕见疾病儿科心脏病学的 MD 的服务请求。在这个组中,我们已经确定了 3 个服务请求(分别为案例研究 1-3、WP 3-5)。
纪念馆的地热系统,我们理解是南半球最大的地热系统,该系统于10月8日正式打开了部长Keogh和Bowen。重要的是,通过利用我们的自然资源现场,与传统系统的能源成本相比,这种地热系统每年将节省高达100万美元,并且该项目还将消除每年最多一千吨二氧化碳的生产。
最近,有效的视觉变压器表现出出色的性能,并且在资源受限的范围内延迟较低。通常,他们在宏观水平上使用4×4贴片嵌入式和4阶段结构,同时在微观级别利用多头配置的同时注意力。本文旨在解决记忆效率高的人中所有设计级别的计算重复。我们发现,使用较大的修补茎不仅降低了内存访问成本,而且还通过利用令牌表示,从早期阶段降低了空间冗余,从而实现了态度性能。fur-hoverore,我们的初步分析表明,在早期阶段的注意力层可以用会议代替,并且后期阶段的几个注意力头在计算上是多余的。为了处理这一点,我们介绍了一个单头注意模块,该模块固有地预先预先冗余,并同时通过相结合的全局和本地信息来提高准确性。在解决方案的基础上,我们引入了Shvit,这是一种单头视觉变压器,获得了最先进的速度准确性权衡。例如,在ImagEnet-1k上,我们的SHVIT-S4在GPU,CPU和iPhone12移动设备上比MobileVitV2×1.0快3.3×,8.1×和2.4倍,而同时更准确。用于使用Mask-RCNN头对MS Coco进行的对象检测和实例分割,我们的模型分别在GPU和移动设备上表现出3.8×和2.0×下骨架潜伏期时,可以与FastVit-SA12进行比较。
Brian Drake 是国防情报局未来能力与创新办公室的人工智能主任。他领导该机构的人工智能研究和开发投资组合。作为一名分析师,他领导多个团队应对来自国家和非国家行为者的威胁,涉及技术、反情报和禁毒主题。他曾担任德勤咨询公司的经理和托夫勒联合公司的管理顾问,专门为商业和政府客户提供战略规划、业务发展、合作咨询、技术和创新服务。他还曾担任系统规划和分析公司的军事平台和政策分析师以及 DynCorp 的核武器计划分析师。他拥有默瑟大学的文学学士学位和乔治城大学的硕士学位。除了他的官方职责外,他还是国防情报纪念基金会的总裁兼首席执行官;为阵亡国防情报官员的子女设立的奖学金基金。
随着大型语言模型(LLM)的成功,将视觉模型融入了LLM,以建立视觉语言基础模型最近引起了人们的兴趣。但是,现有的基于LLM的大型多模式模型(例如,视频播放,视频聊天)只能摄入有限数量的框架以进行简短的视频理解。在这项研究中,我们主要专注于设计一个有效有效的模型,以进行长期视频理解。我们建议以在线方式处理视频并将过去的视频信息存储在存储库中,而不是像大多数现有作品一样尝试同时进行更多框架。这使我们的模型可以参考历史视频内容以进行长期分析,而不会超过LLM的上下文长度约束或GPU内存限制。我们的内存库可以以现成的方式被缝制到当前的多模式LLMS中。我们在各种视频理解任务上进行了广泛的实验,例如长期介绍,视频问题答案和视频字幕,我们的模型可以在多个数据集中实现最新的性能。
技术限制使得 DAM 成为必需,它从设备物理到算法都带来了新的研究挑战。在设备层面,我们将不得不重新审视如何设计、制造和集成各种内存,以实现与计算单元的最佳连接。这种集成将包括片上、封装上、片外和远距离内存。在架构层面,我们将不得不探索新的布局、访问和缓存结构。我们还必须探索绑定到各种内存以执行应用程序和进行系统管理的专用计算单元。操作系统软件必须管理差异化内存,并将它们暴露给具有有用抽象的程序。应用程序必须适应为其数据结构分配和使用差异化内存。最后,我们将看到算法空间复杂度(就读取、写入和读写内存而言)变得与时间复杂度一样重要。
摘要 —生成性学习策略与认知和情感相联系。基于单因素实验设计,75 名被试被随机分配到化学虚拟现实 (VR) 课程,在三种条件下学习:VR、VR+总结和VR+自我测试。使用 emWave 系统记录学习者在学习过程中的情绪状态。使用保留测试测量学习者的学习成果,使用工具测量学习体验。结果表明,与没有生成性学习策略的 VR 课程学生相比,1)在学习过程中进行生成性自我测试策略的学生在认知过程中表现出更多积极情绪,学习后积极评价更多,记忆测试分数更高;2)在学习过程中进行生成性总结策略的学生在认知过程中表现出更多积极情绪,但即时记忆分数较低。这些发现为解释生成性总结和自我测试学习策略如何影响基于 VR 的学习提供了新的证据。