纸质贡献。本文研究了ML-DSA的内存优化技术,以增强其实际适用性,同时保留其强大的安全性。探索的关键优化之一是通过现场矩阵矢量乘法减少内存足迹。通过实施这些操作,该算法可以显着减少所需的内存量,从而使在具有约束资源的环境中部署ML-DSA更为可行,例如嵌入式系统,IoT设备和移动平台。另一个重要的优化是减少秘密钥匙大小,这是通过延迟构成秘密钥匙的七个参数的计算来获得的,直到需要签名的那一刻。因此,ML-DSA的关键内存消耗可能会降低,从而提高了其对大型秘密键存储的各种实际用例的适合能力。
Java内存泄漏给开发人员带来了重大挑战,通常会导致性能和系统不稳定。“智能调试:AI解决Java内存泄漏的方法”探索了旨在解决和减轻这些问题的创新人工智能技术。本文研究了AI驱动的工具和方法的集成,包括机器学习算法和异常检测,以更有效地识别,分析和解决Java应用程序中的内存泄漏。通过利用预测模型和自动分析,这些AI方法可以增强调试过程,从而精确的见解记忆使用模式和泄漏起源。本文对传统调试方法与AI增强策略进行了比较评估,强调了检测准确性,分辨率速度和整体系统稳定性的提高。调查结果强调了AI改变内存泄漏管理的潜力,从而提供了有关软件调试未来的前瞻性观点。
技术限制使得 DAM 成为必需,它从设备物理到算法都带来了新的研究挑战。在设备层面,我们将不得不重新审视如何设计、制造和集成各种内存,以实现与计算单元的最佳连接。这种集成将包括片上、封装上、片外和远距离内存。在架构层面,我们将不得不探索新的布局、访问和缓存结构。我们还必须探索绑定到各种内存以执行应用程序和进行系统管理的专用计算单元。操作系统软件必须管理差异化内存,并将它们暴露给具有有用抽象的程序。应用程序必须适应为其数据结构分配和使用差异化内存。最后,我们将看到算法空间复杂度(就读取、写入和读写内存而言)变得与时间复杂度一样重要。
当今大多数心理学家对“智力”一词的理解本质上是一个差异性概念。最广为接受的智力结构描述是赫布-卡特尔-霍恩-卡罗尔(HCHC)模型(Brown,2016;Carroll,1993;McGrew,2009;见图 1),该模型将智力归因于一个层次结构。在最低层次上,特定技能和狭义的认知能力可能会对不同的认知任务产生影响。在第二层次上,更具普遍性的广义能力因素有助于解释为什么某些任务彼此之间的关联比与其他任务的关联更紧密。这些广义的能力是相关的,这种常见的、任务一般性的变异性在该模型层次结构的顶端表示为一般智力,通常表示为 g 或 g 因子。 g 因子解释了为什么所有认知任务都倾向于相互关联,这种模式被称为正流形(Carroll,1993;McGrew,2009)。尽管人们对智力结构有着广泛的共识,但对于导致智力个体差异的因果因素,人们的看法却不太一致。智力差异的一个主要解释是人们完成基本认知操作的速度不同,这被称为信息处理速度或处理速度。另一个可能的解释是执行注意力或避免分心、集中注意力和保持注意力的能力不同,有时也称为“认知控制”或“执行功能”。
使用条款本文从哈佛大学的DASH存储库下载,并根据适用于其他已发布材料(LAA)的条款和条件提供,如https://harvardwiki.atlassian.net/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/ngy/ngy/ngy5ngy5ndnde4zjgzndnde4zjgzntc5ndndndgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgiamsfyytytewy
摘要 —生成性学习策略与认知和情感相联系。基于单因素实验设计,75 名被试被随机分配到化学虚拟现实 (VR) 课程,在三种条件下学习:VR、VR+总结和VR+自我测试。使用 emWave 系统记录学习者在学习过程中的情绪状态。使用保留测试测量学习者的学习成果,使用工具测量学习体验。结果表明,与没有生成性学习策略的 VR 课程学生相比,1)在学习过程中进行生成性自我测试策略的学生在认知过程中表现出更多积极情绪,学习后积极评价更多,记忆测试分数更高;2)在学习过程中进行生成性总结策略的学生在认知过程中表现出更多积极情绪,但即时记忆分数较低。这些发现为解释生成性总结和自我测试学习策略如何影响基于 VR 的学习提供了新的证据。
随着大型语言模型(LLM)的成功,将视觉模型融入了LLM,以建立视觉语言基础模型最近引起了人们的兴趣。但是,现有的基于LLM的大型多模式模型(例如,视频播放,视频聊天)只能摄入有限数量的框架以进行简短的视频理解。在这项研究中,我们主要专注于设计一个有效有效的模型,以进行长期视频理解。我们建议以在线方式处理视频并将过去的视频信息存储在存储库中,而不是像大多数现有作品一样尝试同时进行更多框架。这使我们的模型可以参考历史视频内容以进行长期分析,而不会超过LLM的上下文长度约束或GPU内存限制。我们的内存库可以以现成的方式被缝制到当前的多模式LLMS中。我们在各种视频理解任务上进行了广泛的实验,例如长期介绍,视频问题答案和视频字幕,我们的模型可以在多个数据集中实现最新的性能。
Terms of use This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at https://harvardwiki.atlassian.net/wiki/external/NGY5NDE4ZjgzNTc5NDQzMGIzZWZhMGFlOWI2M2EwYTg
最近,有效的视觉变压器表现出出色的性能,并且在资源受限的范围内延迟较低。通常,他们在宏观水平上使用4×4贴片嵌入式和4阶段结构,同时在微观级别利用多头配置的同时注意力。本文旨在解决记忆效率高的人中所有设计级别的计算重复。我们发现,使用较大的修补茎不仅降低了内存访问成本,而且还通过利用令牌表示,从早期阶段降低了空间冗余,从而实现了态度性能。fur-hoverore,我们的初步分析表明,在早期阶段的注意力层可以用会议代替,并且后期阶段的几个注意力头在计算上是多余的。为了处理这一点,我们介绍了一个单头注意模块,该模块固有地预先预先冗余,并同时通过相结合的全局和本地信息来提高准确性。在解决方案的基础上,我们引入了Shvit,这是一种单头视觉变压器,获得了最先进的速度准确性权衡。例如,在ImagEnet-1k上,我们的SHVIT-S4在GPU,CPU和iPhone12移动设备上比MobileVitV2×1.0快3.3×,8.1×和2.4倍,而同时更准确。用于使用Mask-RCNN头对MS Coco进行的对象检测和实例分割,我们的模型分别在GPU和移动设备上表现出3.8×和2.0×下骨架潜伏期时,可以与FastVit-SA12进行比较。
SMA 通常以两种方式使用:要么利用形状记忆效应,要么利用热或应力诱导的马氏体相变提供的超弹性行为。在 TiNi 基 SMA 中,可实现高达 8% [19] 的可逆固有应变,而利用形状记忆效应则需要加热到高温相奥氏体才能可逆地恢复变形。超弹性合金的可逆伪弹性行为与应力诱导的马氏体相变有关,从奥氏体到马氏体。在这种情况下,只需移除施加的载荷即可实现可逆性。根据应用的要求,SMA 的转变温度可以通过热处理或改变成分来调整。[20–22] Chluba 等人。研究表明,三元形状记忆合金 TiNiCu 即使在 1000 万次超弹性循环后也不会出现疲劳,[23] 这使得这种合金成为皮肤电子(应用于皮肤的可拉伸电子产品)等应用的良好候选材料,其中肘部或膝盖处的设备可能会经受大量循环和大应变。嵌入聚合物中的传统金属(如铜)的循环行为已被研究,结果显示应变高达 5% 时就会出现裂纹。[24] 在人体应用中