与Ocimum Sanctum @ 5.0%记录了最长的花瓶寿命(11.00天),CUV为30.82 g天-1,CTL为39.66 G天-1,最小微生物载荷3.15 CFU×10 -5。在植物提取物的不同组合中,在花瓶溶液中含有t 3(Mentha viridis @ 5.0% +Ocimum Sanctum @ 5.0%)的花瓶寿命为9.35天,CUV为28.96 g天-1,CTL -1,CTL的29.19 g天-1,新鲜21.58 g -1 -1 c.58 crimiem -1 c.58 c.58 c.58 c.58 c.58 c.58 c.58 c.58 c.58 c。 。在植物提取物对Gerbera Flowers T 2花瓶寿命的影响(5.0%)最适合维持花瓶寿命及其参数,并且与T 16(8 hqs @ 0.8%)相当。t 3(Mentha Viridis @ 5.0% +5.0% @ 5.0%)有效。
口腔具有多样的微生物生态系统,但仍容易受到传染病的影响。当细菌积聚在牙齿上时,形成牙菌斑,如果未治疗,它可能会发展为牙龈炎。牙龈炎可以发展为牙周炎,如果未治疗,这会对牙龈和潜在的支撑组织造成无法弥补的损害。数百种细菌种类参与龋齿,例如链球菌,乳酸菌。漱口水旨在减少口腔细菌,清除任何食物碎屑,并在口腔中提供愉悦而清新的味道。包括酒精,薄荷醇和桉树在内的杀菌化学物质用于漱口水来破坏微生物。斑块和牙龈炎可以通过使用漱口水来避免。每种漱口水混合物都有不同的化学物质,并且每种产品都有特定的目的。草药漱口水被认为是商业产品的有效替代品。草药的漱口水需求量很高,因为它们具有较小或没有副作用,并有效地对口腔病原体作用。草药被广泛认为是高效的。药草长期以来一直被用来治疗疾病,因为它们具有针对人类病原体的抗菌和抗真菌特性。草药洗涤能力能够输送治疗成分,以与口腔表面存在的有机体相对。草药漱口水是从四个不同叶子的水提取物中制备的,即tenuiflorum,plectranthus amboinicus,mentha和foeniculum vulgare。龋齿和牙周疾病是许多人在生活的各个阶段经历的最常见的传染病之一,在不从事基本口腔卫生的儿童和青少年中,人们的流行率很高。针对口腔病原体葡萄球菌SP进行了测试。,链球菌sp。和杆菌sp。使用琼脂井扩散法。发现草药漱口水对口腔病原体有效。关键字:草药漱口水,龋齿,围栏疾病,Ocimum tenuiflorum,Plectranthus amboinicus,Mentha和Foeniculum vulgare。
抽象的磷酸盐 - 溶解细菌是植物生长的细菌之一,可通过多种途径溶解土壤中不溶性的磷酸盐并促进植物生长。因此,它提供了一种替代选择,而不是应用破坏土壤化学和生态平衡的化学肥料。尽管最近关于磷酸盐溶解细菌的研究最近有所增加,但有关薄荷和茴香根际的研究仍然有限。需要研究可以溶解磷酸盐并替代化学肥料的不同根际局部细菌。已经确定,从薄荷(Mentha Piperita L.)和茴香(Foeniculum vulgare L.)根瘤菌获得的53种细菌分离株中,有15种在Pikovskaya Agar(PKA)介质上使用Maldi-tof MS MAST形成了一个透明(Halo)根源。评估了这些分离株的形态,生化和IAA产生以及通过NBRIP肉汤培养基中分离株对磷酸盐溶解的定量测量。从枯草芽孢杆菌MMS -7中注意到溶解度为281.6 mg l -1的最高效率。接下来是荧光症MMS -11,溶解值分别为263.4 mg l -1和苏云金芽孢杆菌MMS -3,溶解值分别为172.1 mg l -1。在磷酸盐溶解细菌分离株中,P溶解指数在PKA琼脂培养基上为1.2-3.7。此外,使用枯草芽孢杆菌MMS -7,在23.38 µg mL -1下的最高IAA产生。关键字:Mentha Piperita,foeniculum vulgare,磷酸盐溶解细菌,MALDI TOF MS接下来是荧光症MMS -11,其值为19.72 µg ml -1和苏云金芽孢杆菌,使用MMS -3,值为18.98 µg ml -1。这项研究表明,选定的局部分离株可以用作有效的基于磷酸盐的微生物肥料。
➢ Modeling and application areas of conical fluidized bed ➢ Use of micro and nano additives in binders for application in composites ➢ Extraction of essential oil from Mentha piperita and its yield and quality analysis ➢ Treatment and reuse of leather industry wastewater ➢ Pyrolysis and co-pyrolysis studies of biomass and specific waste materials Courses taught UG Process Design and Economics Plant Design and Project Engineering Equipment Design Bio System Process Separation过程化学过程安全性和风险分析流体流动机械操作传热操作质量转移操作PG化学工艺植物管道系统的设计高级分离过程高级化学工程热力学统计设计实验安全,危害和风险分析协会与印度印度印度英国行政人员学院Iiche iiche iiche iiche iiche eiche iiche iiche eiche efrations of Engineers of Engineers of Engineers of Engineers of Engineers
Shriman Bhausaheb Zadbuke Mahavidyalaya的微生物研究系,Barshi,Dist。Solapur,印度马哈拉施特拉邦。电子邮件:rautradha1@gmail.com,swk1959@rediffmail.com摘要肌动菌是细菌分类法中奇怪的生物群。放线菌在所有类型的土壤中都是普遍的。本研究重点介绍了来自某些药用植物的根际土壤的放线菌的生物多样性,这些植物可在Barshi,Dist的本地可用。solapur。M.S,印度。 筛选了药用植物的根际土壤进行放线菌的研究。 药用植物的根际土壤,即;芦荟Barbadense,Emblica officinalis,Zingiber Officinale,Tinospora Cardifolia,Nerium leander,Eucalyptus camaldulensis,Mentha Arvensis,Santalum专辑,hibiscus - Rosa-Sinensis,Ocimum Sanctum和Curcuma Longa,用于筛选cartinoshorsonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonysomycetes。 系列稀释技术用于使用甘油天冬酰胺琼脂作为营养培养基分离放线菌。 总共获得了71个分离株。 这些分离株在形态,文化和生化上进行了研究。 通过Micro - 是软件,也是16sRRNA,将所获得的分离株鉴定为放线菌。 在这些大多数分离株中,属于链霉菌(70%),链球菌(9%),Nocardia(7%),微孔孢子虫(4%)和微型多孢子虫(10%)。 关键词:放线菌,药用植物,链霉菌,根际土壤。 *通讯地址:Raut R. A.,Shriman Bhausaheb Zadbuke Mahavidyalaya,Barshi,Barshi,Raut R. A.M.S,印度。筛选了药用植物的根际土壤进行放线菌的研究。药用植物的根际土壤,即;芦荟Barbadense,Emblica officinalis,Zingiber Officinale,Tinospora Cardifolia,Nerium leander,Eucalyptus camaldulensis,Mentha Arvensis,Santalum专辑,hibiscus - Rosa-Sinensis,Ocimum Sanctum和Curcuma Longa,用于筛选cartinoshorsonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonymonysomycetes。系列稀释技术用于使用甘油天冬酰胺琼脂作为营养培养基分离放线菌。总共获得了71个分离株。这些分离株在形态,文化和生化上进行了研究。通过Micro - 是软件,也是16sRRNA,将所获得的分离株鉴定为放线菌。属于链霉菌(70%),链球菌(9%),Nocardia(7%),微孔孢子虫(4%)和微型多孢子虫(10%)。关键词:放线菌,药用植物,链霉菌,根际土壤。*通讯地址:Raut R. A.,Shriman Bhausaheb Zadbuke Mahavidyalaya,Barshi,Barshi,Raut R. A.Solapur,印度马哈拉施特拉邦。 div>
本文的目的是通过使用2,2-二苯基-1- picrylhydrazyl(DPPH)测定法分析不同蔬菜中抗氧化剂价值的估计,以更好地了解饮食选择与人类健康之间的复杂相互作用。蔬菜是抗氧化剂的极好来源,这对于与各种疾病相关的自由基作斗争至关重要。这导致对抗氧化剂的研究及其对健康的潜在益处的增加。DPPH测试是这些努力的关键工具,因为它的可靠性和简单性。dpph提供了自由基与抗氧化剂电子反应,并在517nm处显示出吸光度,这是由于自由基在DPPH和植物提取物溶液中的自由基而导致的最小抗氧化活性。我们的观察结果分析了phyllanthus(印度鹅龙又名AMLA)的抗氧化活性最高约82%。这项活动随后是Mentha Spiata(Spearmint),Zingiber Officinale(Ginger),Trigonella foenum graecum(Fenugreek),Coriandrum sativum(Coriander),显示了50%以上的活动,因此这些蔬菜可以显示出未来探索的有希望的参考。本文强调了潜在的健康后果,并突出了抗氧化剂对与氧化应激相关的疾病的保护作用,强调了食用蔬菜的意义。为了充分意识到蔬菜在增强人类福祉方面的潜力,未来的研究主题包括制定标准化方案和探索新的抗氧化剂。总而言之,本文充当了学者和专业人士的指南针,指出了对植物抗氧化剂与人类健康之间存在的复杂相互作用的更彻底理解的方向。
摘要:在适应环境挑战时,酶滥交在进化上是在植物上获得新酶功能的有利有利的。但是,这种滥交会对微生物中植物酶编码的基因的表达产生负面影响。在这里,我们表明,精炼类黄酮3' - 羟化酶(F3'H)和4'-O -O-甲基转移酶(F4'OMT)的滥交可改善(2 s) - 大肠杆菌中的粘蛋白蛋白产生。首先,我们采用了反分子对接来筛选来自Tricyrtis hirta的高底物特异性Thf3'h,可以选择性地将100 mg l-1(2 s) - 纳林蛋白转换为(2 s)-eriodictyol,但不是(2 s) - sososakuranetin,with airair cyto p450 p450。第二,我们采用了一种定向的进化方法来限制Mentha×Piperita的MPOMT的滥交。携带MPOMT S142V突变体的菌株表现出对(2 s)eriodictyol的偏爱。最后,产生了27.5 mg l-1(2 s) - hisperetin,而仅少量的(2 s) - eriodictyol和(2 s) - 苏瓜氏素作为副产物积累。该值与父母菌株相比,(2 s) - 嵌素增加了14倍,以及侧产物的急剧减少。我们的工作强调了减轻微生物细胞工厂生产天然产物时植物酶滥交的好处。关键字:酶混合,类黄酮,(2s) - hesperetin,定向进化,类黄酮3' - 羟化酶,黄酮4''-o-甲基转移酶■简介黄酮类黄酮是遥远的基本c 6 -c 6 -c 6 -c 6 -c 6 -c 6 carbon carbon carbone carbon car car car the care1除了它们的生态重要性外,2种类黄酮施加抗氧化剂,3,4抗癌,5和肝保护活性。6最近,报告了类黄酮对SARS-COV19的积极作用。7在2020年,全球类黄酮市场的价值为1.497亿美元,预计到2030年将达到2.7178亿美元(按产品类型,表格,应用程序,应用:全球机会分析和行业预测,2021 - 2030年)。尤其是O-甲基化的类黄酮已成为具有众多生物学和药理特性的8-11