(57)本发明涉及用于用于抗莱姆病或毛毛虫病疫苗的Chimeric OSPA分子的发展。更具体地说,嵌合式分子包括一个来自OSPA血清型的近端部分,以及来自An-
Maria Cutumisu、Duane Szafron 加拿大艾伯塔大学计算机科学系 埃德蒙顿 {meric, duane}@cs.ualberta.ca 摘要 我们描述了一种 AI 行为架构,该架构使用行为队列支持响应式协作可中断和可恢复行为。该架构将行为集包装到角色中,提供了一种简单有效的机制,可将行为封装到可根据环境标准动态更改的组件中。为了说明该架构在商业环境中的可行性,我们在 BioWare Corp. 的 Neverwinter Nights 游戏中实现了该架构。为了向游戏设计师展示该架构的可用性,我们在 ScriptEase 中实现了一个简单的界面,以便无需任何编码技能即可使用该架构。
效果我们要检测到的QTL效应。对于PowerCalc和样品,这是一个Nu-erseric(向量)。为可检测到它指定了间交叉的附加成分和优势成分的相对大小。效应的规范取决于十字架。对于反向交叉而言,这是杂合gote和纯合子的均值。对于RI线来说,这是纯合子均值的一半,对于间卷,它是C(a,d)的两个组成矢量,其中A是添加效应(纯合子之间的差异),而D是主导效应(杂合子和纯合量的平均值之间的差异)。基因型均值为-A-D/2,D/2和A-D/2。对于可检测到的,可选的对于间折,可以使用字符串指定QTL效应类型。字符串“ add”或“ dom”用于分别表示表型的加性模型或主导模型。可能是表格C(a,d)的数量向量,表明添加剂和优势成分的相对幅度(如上所述)。默认值为“ add”。
pebax®2533是一种热塑性弹性体,含有20 wt%的聚酰胺(PA)脂肪族硬块,可提供我的强度和80 wt%的无定形多醚(PE)软块,可促进CO 2分子的运输。pebax®2533被认为是为CO 2分离过程制造膜的有前途的材料,显示了ACCEP-表CO 2渗透性,具有理想的CO 2 /N 2选择性(Li等,2021a; Kim等,2020)。然而,聚膜的特性受到气体渗透性和选择性之间的典型权衡限制,由Robeson上界表示(Dal-Cin等,2008)。混合基质膜(MMMS)的织物是克服在气体分离过程中应用的聚合膜中取舍关系的有效方法(Kamble等,2021; Singh等,2021; Shah Buddin和Ahmad,2021年)。mmms可以整合聚合物矩阵的加工性和
需要在这些接受过大量治疗的人群中找到新的治疗方案。临床和经济评论研究所 (ICER) 进行了系统的文献综述和成本效益分析,以评估 3 种针对 B 细胞成熟抗原 (BCMA) 的新疗法对接受过大量治疗的 RRMM 患者的健康和经济结果。BCMA 优先在浆细胞上表达,使其成为 MM 的一个有吸引力的治疗靶点。Belantamab mafodotin blmf (Blenrep,葛兰素史克) 是一种抗体药物偶联物,其中单克隆抗体与细胞毒药物相连。Belantamab 在接受过大量治疗(6-7 种先前治疗)的 TCRMM 患者(大多数四重和五重耐药,通常定义为对前面提到的所有 3 种药物类别中的 4 种或 5 种药物均有耐药性)中进行研究。 Idecabtagene vicleucel(ide-cel、Abecma、Bristol Myers Squibb 和 bluebird bio)和 ciltacabtagene autoleucel(cilta-cel、Janssen 和 Legend biotech)是嵌合抗原受体 (CAR) T 细胞疗法,涉及设计患者自身的 T 细胞以靶向 BCMA。
CDCA7,用羧基末端半胱氨酸结构域(CRD)编码蛋白质,在免疫缺陷,丝状不稳定性和面部异常(ICF)综合征中突变,这种疾病与近二酸 - 近甲基卫星DNA的甲基化有关。CDCA7如何将DNA甲基化引导到并置玻璃液区域是未知的。在这里,我们表明CDCA7 CRD采用了独特的锌结合结构,该结构识别由两个序列基序形成的非B DNA中的CpG二元组。CDCA7,但不是ICF突变体,优先通过链特异性CpG半甲基化结合非B DNA。未甲基化的序列基序高度富集在人类染色体的centromeres上,而甲基化基序分布在整个基因组中。在S期,CDCA7而不是ICF突变体集中在组成型异染色质灶中,并且通过由CRD结合的外源半甲基化的非B DNA可以抑制这种灶的形成。在DNA复制过程中在近齿粒区域中形成的非B DNA的结合提供了一种机制,通过该机制CDCA7控制DNA甲基化的特异性。
抗生素过多和不必要的抗生素施用已激发了多物种抗性微生物的演变。因此,迫切需要先进的活性化合物。短寿命离子对结构的离子液体具有高度可调且具有多种应用。 除了它们独特的物理化学特征外,新发现的离子液体生物学活动使生物化学家,微生物学家和医学科学家着迷。 特别是,它们的抗菌特性在克服与抗生素耐药病原体有关的当前挑战方面开了新的远景。 在此处介绍了有关具有抗微生物活性的单聚合物和聚合物形式的离子液体衍生物的讨论。 考虑了影响其抗菌活性的离子液体和参数的抗菌机制,例如链长,阳离子/阴离子类型,阳离子阳离子和聚合。 提出了离子液体在生物医学领域中的潜在应用,包括再生医学,生物传感和药物/生物分子递送,以刺激科学社区,以进一步提高离子液体的抗菌功效。离子液体具有高度可调且具有多种应用。除了它们独特的物理化学特征外,新发现的离子液体生物学活动使生物化学家,微生物学家和医学科学家着迷。特别是,它们的抗菌特性在克服与抗生素耐药病原体有关的当前挑战方面开了新的远景。在此处介绍了有关具有抗微生物活性的单聚合物和聚合物形式的离子液体衍生物的讨论。考虑了影响其抗菌活性的离子液体和参数的抗菌机制,例如链长,阳离子/阴离子类型,阳离子阳离子和聚合。提出了离子液体在生物医学领域中的潜在应用,包括再生医学,生物传感和药物/生物分子递送,以刺激科学社区,以进一步提高离子液体的抗菌功效。