当今的算法已经在各个领域达到甚至超越了人类的任务表现。特别是,人工智能(AI)在组织与个人(例如其客户)之间的互动中发挥着核心作用,例如改变了电子商务或客户关系管理。然而,大多数人工智能系统仍然是难以理解的“黑匣子”——不仅对于开发人员,而且对于消费者和决策者也是如此(Meske 等人,2022 年)。对于电子市场而言,诸如试图管理风险和确保基于机器学习的电子交易系统符合监管要求等问题不仅源于其数据驱动的性质和技术复杂性,还源于其黑匣子性质,其中“学习”创造了
当今的算法在各个领域已经达到甚至超越了人类的任务表现。特别是,人工智能 (AI) 在组织与个人(例如其客户)之间的互动中起着核心作用,例如改变了电子商务或客户关系管理。然而,大多数人工智能系统仍然是难以理解的“黑匣子”——不仅对于开发人员,而且对于消费者和决策者也是如此(Meske 等人,2022 年)。对于电子市场,试图管理风险和确保基于机器学习的电子交易系统的监管合规性等问题不仅源于其数据驱动的性质和技术复杂性,还源于其黑匣子性质,其中“学习”创造了
摘要 社交媒体中的仇恨言论是一个日益严重的问题,会对个人和整个社会产生负面影响。社交媒体平台上的版主需要技术支持来检测有问题的内容并做出相应的反应。在本文中,我们开发并讨论了最适合为使用人工智能 (AI) 协助人类版主的决策支持系统创建高效用户界面的设计原则。我们对三个设计周期内的各种设计方案进行了定性和定量评估,共有 641 名参与者。除了测量感知易用性、感知有用性和使用意图外,我们还进行了一项实验,以证明 AI 可解释性对最终用户感知的认知努力、感知的信息量、心理模型和 AI 可信度的重大影响。最后,我们与软件开发人员一起测试了获得的设计知识,他们对所提出的设计原则的可重用性评价为高。