HER2阳性乳腺癌约占所有乳腺癌的15-20%,其特征是其侵略性复发,转移和生存降低。 尽管抗HER2疗法进展,但许多患者最初或在初始阳性反应后仍会面临治疗性抗药性,从而导致复发或疾病进展。 这项研究的主要重点是确定过氧化物酶体增殖物激活的受体伽马(PPARG)是通过建立HER2阳性乳腺癌的抗HER2药物耐药细胞系来降低药物敏感性的因素。 我们发现PPARG促进脂肪酸代谢并激活PI3K/AKT/MTOR信号通路。 PPARG过表达后抑制脂肪酸合成(FASN),有效阻止PI3K/AKT/MTOR途径的激活并增强细胞抗HER2药物敏感性。 PPARG抑制剂GW9662的共同给药已成为增强抗HER2疗法疗效的有前途的策略,从而为临床应用提供了潜力。HER2阳性乳腺癌约占所有乳腺癌的15-20%,其特征是其侵略性复发,转移和生存降低。尽管抗HER2疗法进展,但许多患者最初或在初始阳性反应后仍会面临治疗性抗药性,从而导致复发或疾病进展。这项研究的主要重点是确定过氧化物酶体增殖物激活的受体伽马(PPARG)是通过建立HER2阳性乳腺癌的抗HER2药物耐药细胞系来降低药物敏感性的因素。我们发现PPARG促进脂肪酸代谢并激活PI3K/AKT/MTOR信号通路。PPARG过表达后抑制脂肪酸合成(FASN),有效阻止PI3K/AKT/MTOR途径的激活并增强细胞抗HER2药物敏感性。PPARG抑制剂GW9662的共同给药已成为增强抗HER2疗法疗效的有前途的策略,从而为临床应用提供了潜力。
摘要:心力衰竭(HF)是一种进行性慢性病,仍然是全球死亡的主要原因,影响了6400万以上的患者。HF可能是由具有单基因病因的心肌病和先天性心脏缺陷引起的。与心脏缺陷发展相关的基因和单基因疾病的数量正在不断增长,并包括遗传的代谢杂志(IMD)。已经报道了几种影响各种代谢途径的IMD,出于心肌病和心脏缺陷。考虑到糖代谢在心脏组织中的关键作用,包括能量产生,核酸合成和糖基化,与心脏表现相关的越来越多的与碳水化合物代谢相关的IMD越来越多。在这项系统的综述中,我们提供了与碳水化合物代谢相关的IMD的全面概述,这些IMD呈现出心肌病,心律失常疾病和/或结构性心脏缺陷。我们识别出患有心脏并发症的58 IMD:3糖/糖连接转运蛋白的缺陷(GLUT3,GLUT10,THTR1); 2个磷酸盐途径的疾病(G6PDH,TALDO); 9糖原代谢疾病(GAA,GBE1,GDE,GYG1,GYS1,LAMP2,RBCK1,PRKAG2,G6PT1); 29 congenital disorders of glycosylation (ALG3, ALG6, ALG9, ALG12, ATP6V1A, ATP6V1E1, B3GALTL, B3GAT3, COG1, COG7, DOLK, DPM3, FKRP, FKTN, GMPPB, MPDU1, NPL, PGM1, PIGA, PIGL, PIGN, PIGO,PIGT,PIGV,PMM2,POMT1,POMT2,SRD5A3,XYLT2); 15碳水化合物连接的溶酶体储存疾病(CTSA,GBA1,GLA,GLB1,HEXB,IDUA,IDS,IDS,SGSH,NAGLU,HGSNAT,GNS,GNS,GALNS,GALNS,GALNS,ARSB,ARSB,GUSB,GUSB,ARSK)。通过这项系统评价,我们旨在提高人们对碳水化合物连接IMD的心脏介绍的认识,并引起人们对碳水化合物连接的致病机制的注意,这些致病机制可能是心脏并发症的基础。
甲基肾上腺酸还原酶(MTHFR),蛋氨酸合酶(MTR),蛋氨酸合酶还原酶(MTRR),钴胺素还原酶(MMADHC)(MMADHC)和胱硫醇β-合成酶(CBS)是提供指导的基因在将氨基酸同型半胱氨酸(HCY)转换为蛋氨酸方面发挥作用。当存在基因的异常拷贝时,它们可能导致酶功能降低,导致同型半胱氨酸水平升高。血液中异常高水平的HCY与几种慢性疾病有关,例如注意力缺陷/多动症(ADHD),心血管疾病,癫痫,头痛,胃肠道症状和状况,精神疾病,精神疾病,骨质疏松症和骨质疾病。
1 UK Center for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom, 2 University of Florida, Plant Pathology Department, Space Life Sciences Lab, Exploration Park, Merritt Island, FL, United States, 3 Laboratory for Astrophysics, Leiden Observatory, Leiden University, Leiden, Netherlands, 4 Life Support and Physical Sciences Instrumentation Section, European Space Agency, Nordwijk, Netherlands, 5太空政策研究所,乔治华盛顿大学,华盛顿特区,美国,6德国航空航天中心(DLR),航空医学研究所,航空医学研究所,放射生物学系,研究小组,研究小组,德国,德国,7个中心,生物生物学中心MOLéculaire,MOLéculaire,National de la Rechorche Sciention Institution Instuction Institution Institution Institution Institution Institution Institution Institution Instuction Instription and or e>卫生,微生物学和环境医学,格拉兹,奥地利,奥地利9中心(CSIC-INTA),西班牙马德里,西班牙10 CBMSO,西班牙10 CBMSO,MADIS OHF,11 MATIS OHF,MATIS OHF,微生物学集团,研究与创新部,研究与创新部,食品科学和营养学院,伊克兰大学,冰岛,ICIDEND,ICLEAND)法国斯特拉斯堡
摘要:基本通量模式(EFM)为系统地表征稳态,细胞表型以及代谢网络鲁棒性和脆弱性提供了严格的基础。但是,EFM的数量通常随代谢网络的大小而成倍增长,导致过度的计算需求,不幸的是,由于系统限制,这些EFM的很大一部分在生物学上是不可行的。这种组合爆炸通常阻止对基因组规模代谢模型的完整分析。传统上,EFM是通过Double Description方法计算的,这是一种基于矩阵计算的有效算法;但是,只能将少数几个约束集成到该计算中。他们必须对辅助的设定包含是单调的;否则,必须在后处理中对其进行处理,因此不能节省计算时间。我们提出ASPEFM,这是一种基于答案集编程(ASP)和线性编程(LP)的混合计算工具,允许在实施许多不同类型的约束时进行EFM的计算。我们将方法应用于包含226×10 6 EFM的大肠杆菌核心模型。在考虑转录和环境调节,热力学约束和资源使用方面的考虑时,解决方案空间被降低至可直接使用ASPEFM计算的1118 EFM。使用后处理和Pareto前部分析,可以将完全有氧厌氧的O大肠杆菌生长到O的2个完全有氧厌氧的O 2梯度上的大肠杆菌生长。
BC不列颠哥伦比亚省温哥华的儿童医院,加拿大不列颠哥伦比亚省,加拿大奖学金计划主管:Sanjukta Basak博士:Drs。 Shazhan Amed,Jean-Pierre Chanoine,Danya Fox,Brenden Hursh,Daniel Metzger,Constadina Panagiotopopoulos,Trisha Patel,Ralph Rothstein,Carolina Silva,Laura Stewart BC儿童医院提供2年认可的培养基培训计划,并提供了2年认可的Ispecialty培训计划。 我们强烈鼓励候选人通过致力于学术工作(研究,QI,医学教育和/或全球健康)的第三年进行培训。 我们旨在以询问思想(研究取向,推理能力,批判性思维,热衷于创新的能力)吸引和发展高度积极进取的候选人。 BC儿童医院位于加拿大美丽的温哥华,这是世界上最充满活力和活跃的城市之一。 以令人惊叹的风景和景观而闻名,温哥华为小儿内分泌学和代谢方面的研究金培训提供了完美的背景。 医院是英国省唯一的小儿内分泌学中心BC不列颠哥伦比亚省温哥华的儿童医院,加拿大不列颠哥伦比亚省,加拿大奖学金计划主管:Sanjukta Basak博士:Drs。Shazhan Amed,Jean-Pierre Chanoine,Danya Fox,Brenden Hursh,Daniel Metzger,Constadina Panagiotopopoulos,Trisha Patel,Ralph Rothstein,Carolina Silva,Laura Stewart BC儿童医院提供2年认可的培养基培训计划,并提供了2年认可的Ispecialty培训计划。我们强烈鼓励候选人通过致力于学术工作(研究,QI,医学教育和/或全球健康)的第三年进行培训。我们旨在以询问思想(研究取向,推理能力,批判性思维,热衷于创新的能力)吸引和发展高度积极进取的候选人。BC儿童医院位于加拿大美丽的温哥华,这是世界上最充满活力和活跃的城市之一。以令人惊叹的风景和景观而闻名,温哥华为小儿内分泌学和代谢方面的研究金培训提供了完美的背景。医院是英国省唯一的小儿内分泌学中心
摘要:癌细胞的细胞代谢被重新编程,以满足其高生物能量和生物合成需求。这种代谢重编程伴随着氧化还原代谢的改变,其特征是活性氧 (ROS) 的积累。ROS 的产生增加(主要是由线粒体呼吸引起)被抗氧化防御(主要是谷胱甘肽和抗氧化酶)的增加所抵消。癌细胞适应高浓度的 ROS,这会导致肿瘤发生、转移形成、治疗耐药性和复发。在胰腺导管腺癌 (PDAC) 中观察到的频繁基因改变会影响 KRAS 和 p53 蛋白,它们分别在 ROS 的产生和控制中发挥作用。这些观察结果导致人们提出使用抗氧化剂来预防 PDAC 的发展和复发。在这篇综述中,我们重点介绍了进一步提高 ROS 水平以诱导 PDAC 细胞死亡的治疗策略。促进ROS产生与抑制抗氧化能力相结合是临床治疗胰腺癌的一种有希望的途径。
抽象的干细胞具有自我更新和分化的特殊能力,使其在再生医学中具有很高的价值。其中,神经干细胞(NSC)在神经发育和修复过程中起着基本作用。NSC特征和命运受到微环境和细胞内信号传导的精致调节。有趣的是,新陈代谢在神经分化过程中策划表观基因组动力学方面起着关键作用,从而促进了从未分化的NSC到专门的神经元和神经胶质细胞类型的转移。新陈代谢和表观基因组之间的这种复杂的相互作用对于精确调节基因表达模式并确保正确的神经发育至关重要。本评论重点介绍了NSC命运的代谢调节背后的机制及其与表观遗传调节的联系,以塑造干性和神经分化的转录程序。对这些分子齿轮的全面理解对于在神经系统疾病的再生医学和个性化疗法中的转化应用似乎是基础。
摘要越来越多的证据支持了线粒体功能障碍可能代表帕金森氏病(PD)的关键特征的想法。能源生产的中央调节剂线粒体也参与了其他几种基本功能,例如细胞死亡途径和神经炎症,使它们成为PD管理的潜在治疗靶点。有趣的是,与PD相关的最新研究报告了胰岛素敏化剂MSDC-0160靶向线粒体丙酮酸载体(MPC)的神经保护作用。作为丙酮酸进入线粒体基质的唯一进入点,MPC在能量代谢中起着至关重要的作用,在PD中受到影响。因此,这项研究旨在提供有关MSDC-0160神经保护作用的机制的见解。我们研究了慢性MSDC-0160治疗在单侧6-OHDA PD大鼠中的行为,细胞和代谢影响。我们通过使用核磁共振光谱(NMR)基于基于的代谢组分学的人的背纹状体活检中的关键线粒体酶表达了线粒体相关的过程。MSDC-0160单侧6-OHDA大鼠的治疗改善了运动行为,减少了多巴胺能神经神经膜的神经神经化,并降低了MTOR活性和神经炎症。同时,MSDC-0160施用强烈修改的能量代谢,这是酮症发生,β氧化和谷氨酸氧化以满足能量需求并维持能量稳态的情况。MSDC-0160通过重组与能量代谢相关的多种途径来发挥其神经保护作用。
Sirtuin 6 (SIRT6) 是一种 NAD+ 依赖性组蛋白去乙酰化酶,已证实可在多种癌症类型中发挥抑癌基因的作用,包括头颈部鳞状细胞癌和食道鳞状细胞癌 (HNSCC 和 ESCC)。然而,在 HNSCC 和 ESCC 中激活 SIRT6 的疗法的潜力仍未被探索。在这项工作中,我们研究了变构 SIRT6 激活剂 MDL-800 在体外和体内 HNSCC 和 ESCC 细胞系中的治疗潜力和作用机制。首先,我们表明 MDL-800 治疗通过抑制 HNSCC 和 ESCC 细胞系的增殖和迁移在体外表现出广泛的抗肿瘤活性。在细胞衍生的异种移植小鼠模型中,MDL-800 治疗有效延缓了两种癌症模型中的肿瘤生长。从机制上讲,我们利用全局 H3K9ac 乙酰化分析和蛋白质阵列证明 MDL-800 治疗可有效抑制葡萄糖代谢和蛋白质翻译,而这些是由 mTOR、E2F 相关 G1/S 转录、核糖体蛋白 S6 (S6) 和 4E-BP1 活性受阻引起的。这种 mTOR 抑制会诱导涉及 IGF-1R/INSR 激活的反馈回路,从而促使葡萄糖进入细胞。由于 PI3K/AKT 通路变得过度活跃,IGF1R 激活限制了 MDL-800 的抗肿瘤活性。使用 alpha 特异性 PI3K 抑制剂 (BYL719/Alpelisib) 阻止该反馈回路,当 MDL-800 和 BYL719 结合使用时可产生协同抗肿瘤作用。在体内,MDL-800 和 BYL719 的联合治疗可延长反应时间,即使在初始治疗后 30 天也观察到最小的进展。总体而言,我们的研究确定了 HNSCC 和 ESCC 中 SIRT6 激活的分子机制。我们的研究结果表明,SIRT6 激活剂可能具有治疗潜力,无论是单独使用还是与 PI3K 抑制相结合,都可以治疗 SIRT6 下调并作为肿瘤抑制因子的癌症。