“人”部分)查找您的组号。找到此组号后,请转到附录B查找您的组主题。附录B中为每个主题提供了一个参考列表,以帮助小组成员开始文献审查并准备小组演示文稿。参考列表并不意味着全面。鼓励学生找到与讨论主题相关的其他文献。学生应批判性地评估文献,并在准备口头表现之前对正在讨论的代谢过程有深入的了解。学生应清楚地用自己的单词进行科学准确的方式来清楚解释这个话题 - 不要窃。为口头报告增加了兴奋 - 请花一些时间来发现该主题的哪些方面可能位于该领域的新知识的最前沿。
摘要:酵母在发酵葡萄酒发酵过程中产生的较高醇对葡萄酒的气味和味道的影响最大。目前,在内源性CO 2下过压的甲醇和较高醇的代谢反应尚未完全阐明。在这项工作中,使用OffGEL分级器和LTQ Orbitrap进行蛋白质鉴定的LTQ Orbitrap进行,进行了蛋白质识别,然后进行了代谢组研究,用于检测和定量两种较高酒精(GC-FID和SBSE-TD-GC-MS)和氨基酸(HET)(HEM METES)(HET)的蛋白质(HE)(HEM MET)的变化(HE)在封闭瓶中,在CO 2过压条件下,酿酒酵母与高等醇形成。 控制条件没有CO 2在开放瓶中过压。 在两种情况下都检测到甲醇和6个较高的醇,我们能够与22种蛋白质相关:CO 2过压条件下的15种蛋白质和在控制条件下的22种蛋白质。 对于高醇的前体,在两种情况下都鉴定出18个氨基酸。 在两种情况下获得的代谢和蛋白质组学方面的文件都不同,因此CO 2过压可能会影响较高醇的代谢。 此外,在CO 2过压的条件下无法建立直接相关性;但是,在没有压力的情况下,可以建立关系。,进行了蛋白质识别,然后进行了代谢组研究,用于检测和定量两种较高酒精(GC-FID和SBSE-TD-GC-MS)和氨基酸(HET)(HEM METES)(HET)的蛋白质(HE)(HEM MET)的变化(HE)在封闭瓶中,在CO 2过压条件下,酿酒酵母与高等醇形成。控制条件没有CO 2在开放瓶中过压。甲醇和6个较高的醇,我们能够与22种蛋白质相关:CO 2过压条件下的15种蛋白质和在控制条件下的22种蛋白质。对于高醇的前体,在两种情况下都鉴定出18个氨基酸。在两种情况下获得的代谢和蛋白质组学方面的文件都不同,因此CO 2过压可能会影响较高醇的代谢。此外,在CO 2过压的条件下无法建立直接相关性;但是,在没有压力的情况下,可以建立关系。此处提供的数据可以被视为一个平台,它是酿酒酵母代谢组 - 蛋白质组的基础,目的是在生产起泡葡萄酒的生产条件下了解第二次发酵条件下的酵母行为。
摘要:缺血性心脏病(IHD)是心力衰竭(HF)的主要原因,是全球发病率和死亡率的重要原因。缺血性事件诱导心肌细胞死亡,而居民心肌细胞的增殖能力有限,成年心脏自身修复的能力受到挑战。有趣的是,出生时代谢底物利用率的变化与终末分化和心肌细胞的增殖减少一致,这表明心脏代谢在心脏再生中的作用。因此,旨在调节这种新陈代谢增强轴的策略可以在IHD的情况下促进心脏再生。然而,对这些细胞过程的机械理解的缺乏使得开发可以有效促进再生的治疗方式的挑战。在这里,我们回顾了代谢底物和线粒体在心脏再生中的作用,并讨论了旨在促进心肌细胞周期重新进入的潜在靶标。尽管心血管疗法的进展减少了与IHD相关的死亡,但这导致HF病例大幅增加。对心脏代谢和心脏再生之间相互作用的相互作用的全面了解可以促进发现新颖的治疗靶标,以修复IHD患者的HF风险并降低HF的风险。
神经母细胞瘤 (NB) 是儿童中最常见的颅外肿瘤,平均年龄为 17 个月。NB 是一种源自胚胎神经嵴细胞的自主神经系统肿瘤 [1],其恶性肿瘤的发病机制以分化阻滞为特征 [2,3]。这种异质性疾病涉及许多因素,包括年龄、疾病分期以及遗传和分子特征,这些因素又会影响 NB 是自发消退还是转移并对治疗产生抗药性 [4,5]。在 NB 中描述的基因改变中,MYCN 扩增是最常见的基因功能障碍,也与不良预后有关。此外,影响 α-地中海贫血/智力低下综合征 X 连锁 (ATRX) 基因 [6] 或间变性淋巴瘤受体酪氨酸激酶 (ALK) [7] 的突变在 NB 中也很常见。目前,NB 的治疗策略是根据患者分层分为四个预后组:低危、中危、高危和肿瘤 4 期 [ 8 ]。
摘要目的:局部肿瘤进展是无法手术切除的胰腺导管腺癌 (PDAC) 患者发病率和死亡率显著上升的原因。迫切需要实现持久局部控制的新型有效方法。我们测试了 CPI-613 (devimistat)(一种首创的线粒体代谢小分子研究抑制剂)是否能够改变癌细胞能量代谢并使 PDAC 细胞对放射治疗 (RT) 敏感。方法和材料:分别使用台盼蓝染料排除试验、菌落形成试验和 7-氨基放线菌素 D 试验确定 RT 与 CPI-613 联合治疗对 PDAC 细胞 (MiaPaCa-2 和 Panc-1) 活力、克隆形成潜力和细胞死亡诱导的影响。使用 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物和球状体形成试验测量了 CPI-613-RT 和化疗药物(吉西他滨或 5-氟尿嘧啶)在 MiaPaCa-2 细胞中的协同作用。使用液相色谱-质谱法分析用 RT、CPI-613 或两者处理的代谢物,以确定能量代谢的变化。结果:本研究表明,与单独使用 RT 相比,单次分次 RT(2 和 10 Gy)与 CPI-613 的组合显著抑制了 PDAC 细胞生长。分子分析显示,α-酮戊二酸脱氢酶在蛋白质水平上受到抑制。此外,我们证明,当用 RT-CPI-613 组合处理时,PDAC 细胞的细胞死亡率增加。对接受 CPI-613-RT 治疗的 PDAC 细胞进行靶向代谢组学分析,发现关键线粒体代谢物发生了改变,并且
妊娠糖尿病(GDM)是一种在妊娠期间触发的胰岛素耐药性增强的形式。本研究研究了胰岛素抵抗如何改变瘦长GDM模型中胎盘长链多不饱和脂肪酸(LCPUFA)的转运和代谢。怀孕的Sprague Dawley大鼠用S961,一种胰岛素受体拮抗剂(每天30 nmol/kg S.C.)或妊娠日(GD)7至20的媒介物。每天的产妇体重,食物和水的摄入量。血压评估和葡萄糖耐量测试是在GD20上进行的。胎儿血浆和胎盘在GD20上收集,并使用LC-MAS光谱法处理进行脂肪酸测量。使用RT 2 Profiler PCR阵列评估脂肪酸代谢相关基因的表达。结果通过QRT-PCR验证。孕妇大鼠中用S961的胰岛素受体阻断导致葡萄糖不耐症,空腹葡萄糖和胰岛素水平升高。母体体重增加,食物和摄入量没有影响;但是,S961显着提高了孕产妇的血压和心率。胎盘N3和N6 LCPUFA浓度分别显着降低了8%和11%,但它们在胎儿血浆中的水平增加了15%和4%。rt 2个剖面阵列显示,与脂肪酸β-氧化有关的10个基因的胎盘表达(ACAA1A,ACADM,ACOT2,ACOX2,ACOX2,ACSBG1,ACSBG1,ACSL4,ACSM5,CPT1B,ECI2,EHHADH,EHHADH)和3个与Fatty Acid Acid Acid Acid fortremational(Fab Acid Patherey Patherefeartiment)(Faby Actremight Patherefect)。总而言之,缺乏胰岛素作用增加了与胎盘脂肪酸β-氧化和转运相关的基因表达,而LCPUFA转移到胎儿。向胎儿延伸的脂质水平的增加可能导致脂肪肥胖和后期代谢功能障碍。
1精神病学部分,医学科学和公共卫生系,卡利亚里大学,意大利卡利亚里09121; p.paribello@studenti.unica.it(p.p.); m.garzi@gmail.com(M.G。); beatrice.guiso@gmail.com(B.G.); federicosuprani@hotmail.it(F.S.); vittoriapulcinelli@hotmail.com(v.p。); novella.iaselli@gmail.com(m.n.i。); ialilia.pinna1991@gmail.com(i.p.); giulia444@alice.it(g.s.); carol.corrias@gmail.com(C.C.); fedepinna@inwind.it(f.p。); bcarpini@iol.it(b.c。)2 Cagliari大学医院机构临床精神病学单位,09121 Cagliari,意大利Cagliari 3生物医学科学系,神经科学与临床药理学科,Cagliari大学,孟塞拉托大学,09042 Cagliari; squassina@unica.it(a.s.); claudia.pisanu@unica.it(C.P. ); anna.meloni@unica.it(a.m.); dcongiu@unica.it(D.C.)4帕多瓦大学药物和药理学科学系,意大利帕德瓦35131; stefano.dallacqua@unipd.it(S.D. ); stefania.sut@unipd.it(S.S。); so a.nasini@phd.unipd.it(s.n. ); antonella.bertazzo@unipd.it(A.B。) 5帕多瓦大学生物医学科学系,35131意大利帕德瓦6圣拉法尔科学研究所,20132年,米兰米拉诺,意大利米兰7,麦吉尔大学,蒙特利尔大学精神病学系,QC H3A 1A1,加拿大QC H3A 1A1,加拿大8号,Dalhousie,Halifax,Halifax,ns ns b3 ns b3 halifax,b3 hhos b3 hhos b3 hhof mirko.manchia@unica.it†已故。 ‡这些作者对这项工作也同样贡献。2 Cagliari大学医院机构临床精神病学单位,09121 Cagliari,意大利Cagliari 3生物医学科学系,神经科学与临床药理学科,Cagliari大学,孟塞拉托大学,09042 Cagliari; squassina@unica.it(a.s.); claudia.pisanu@unica.it(C.P.); anna.meloni@unica.it(a.m.); dcongiu@unica.it(D.C.)4帕多瓦大学药物和药理学科学系,意大利帕德瓦35131; stefano.dallacqua@unipd.it(S.D.); stefania.sut@unipd.it(S.S。); so a.nasini@phd.unipd.it(s.n.); antonella.bertazzo@unipd.it(A.B。)5帕多瓦大学生物医学科学系,35131意大利帕德瓦6圣拉法尔科学研究所,20132年,米兰米拉诺,意大利米兰7,麦吉尔大学,蒙特利尔大学精神病学系,QC H3A 1A1,加拿大QC H3A 1A1,加拿大8号,Dalhousie,Halifax,Halifax,ns ns b3 ns b3 halifax,b3 hhos b3 hhos b3 hhof mirko.manchia@unica.it†已故。‡这些作者对这项工作也同样贡献。
图1概述。A,用于研究1和研究2的低血糖诱导程序,使用可变胰岛素阿斯帕特和葡萄糖给药,以及相应的Eugllycaemia和低血糖疗法的驾驶课程。在研究1中,低血糖中血糖(BG)的预期范围为2.0-2.5 mmol L 1,研究2中的3.0-3.5 mmol L 1。驾驶课程由三个不同环境(高速公路,农村和城市)的三个5分钟驱动器组成,而车载驾驶(CAN)和眼动追踪(ET)数据。b,两项研究中的驱动模拟器,ET和葡萄糖管理设置。c,研究1和研究2的关键特征。d,低血糖中的静脉BG研究1,研究2显示为盒子图。总体而言,两项研究中低血糖中的BG均稳定。框图框中的线显示中间,盒子的内边界对应于四分位数范围(IQR = 25%至75个百分位数)和外部边界(即晶须)对应于框边缘的最极端数据点不超过1.5 IQR。值外部晶须范围用点进行了说明。CGM,连续葡萄糖监测
摘要:据报道,高铁存储与2型糖尿病(T2DM)有关。但是,铁代谢与T2DM的关联的证据是不一致的,并且是否存在阈值效应仍然有争议。在本研究中,我们的目的是研究各种铁生物标志物与T2DM的风险以及中国育龄妇女的葡萄糖代谢(IGM)和高血糖症之间的关联。总共将1145名妇女分为三组(正常血糖代谢组; IgM组; T2DM组)。铁代谢的生物标志物(血清铁蛋白(SF),转铁蛋白,可溶性转铁蛋白受体(STFR),转铁蛋白饱和度,血清铁,全体铁和STFR-to-lgferritin Intex)被测量。调整了各种混杂的风险因素后,SF和STFR与IgM的风险呈正相关(第四与第一个四分位数:SF优势比(OR)= 1.93(95%CI 1.17-3.20)和STFR OR = 3.08(95%CI 1.84-5.14)和T2DM(95%)和T2DM(95%)(95%) 1.40–4.06)和STFR OR = 3.84(95%CI 2.53–5.83)。SF与T2DM和高血糖的风险之间存在非线性关系(非线性<0.01)。我们的发现表明SF和STFR可能是T2DM风险的独立预测指标。
1 Undergraduate Medical Education, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T6, Canada 2 Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada 3 Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 3J7,加拿大4核医学部,放射科,放射科,曼尼托巴省曼尼托巴省大学卫生科学系,温尼伯大学,MB R3T 2N2,加拿大MB R3T 2N2,5生物医学工程研究生课程,Manitoba工程价格,MANITIPEG,MANITIPEG,WINNIPEG,WINNIPEG,WINNIPEG,MB R3T 5V6,NEURIDY,CANCAL INTER INTIER,CANCALY SECANDER,CANCAD科学,曼尼托巴大学,温尼伯,MB R3E 0W2,加拿大 *通信:ji.ko@umanitoba.ca†这些作者为这项工作做出了同样的贡献。