超表面是超材料的二维对应物,它已展示出前所未有的能力,可以在单个平面设备中操纵电磁波的波前。尽管该领域取得了各种进展,但超表面所实现的独特功能是以结构复杂性为代价的,导致传统超表面设计的参数扫描非常耗时。尽管人工神经网络提供了一个灵活的平台来显著改善设计过程,但当前的超表面设计仅限于生成定性场分布。在本研究中,我们证明,通过结合串联神经网络和迭代算法,可以用定量场分布克服超表面设计的先前限制。作为原理验证示例,通过设计的网络架构预测的超透镜具有多个焦点,具有相同/正交的偏振状态,以及精确的强度比(定量场分布),并通过数值计算和实验证明。独特而强大的超表面设计方法将加速开发可应用于成像、检测和传感的高精度功能设备。
摘要:最近出现了一个有前途的技术平台,通过使用亚波长纳米索子的二维阵列在纳米级构造材料,从而提供了对光的前所未有的控制。这些元信息具有非凡的光学特性,可以在成像,传感,电信和与能量相关的领域中进行多种应用。跨曲面的一个重要优势在于它们通过精确地设计纳米架阵列的几何形状和材料组成来操纵光谱的能力。因此,它们具有有效的太阳能收获和转换的巨大潜力。在这篇综述中,我们根据元信息介绍了太阳能转换设备的当前最新面积。首先,我们概述了太阳能转化中涉及的基本过程,以及对元时间的主要类别的介绍,即等离子体和介电元信息。随后,我们探讨了使用的数值工具来指导元信息的设计,特别关注促进优化光学响应的逆设计方法。为了展示元时间的实际应用,我们介绍了跨各个领域的选定示例,例如光伏,光电化学,光催化,太阳热和光热路线以及辐射冷却。这些例子强调了可以利用跨度额来利用太阳能的方式。关键字:元时间,质膜,介电,太阳能转换,逆设计,光学响应通过量化元信息的光学特性,可以预期在太阳能收集技术中取得重大进步,从而提供新的实用解决方案来支持新兴的可持续社会。
免责声明 本文件为美国政府机构赞助工作的记录。美国政府、劳伦斯利弗莫尔国家安全有限责任公司及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或劳伦斯利弗莫尔国家安全有限责任公司对其的认可、推荐或支持。本文表达的作者观点和意见不一定代表或反映美国政府或劳伦斯利弗莫尔国家安全有限责任公司的观点和意见,不得用于广告或产品代言目的。
在支持所谓的表面晶格共振(SLR)的光学元面积中。5,10后者提供了在大面积上易于制造的优势,并且可能在集成光子学中使用。与原子的气体(BEC的原始平台)相反,11个激子北极星的寿命很短。这些短寿命限制了基态的EP密度的堆积,从而导致凝结阈值增加。因此,EP凝结需要强大的激光系统来产生足够高的激子并达到阈值,这使得Polariton激光不适合大多数应用。在本文中,我们通过显着降低由硅(SI)跨表面形成的全电腔中的损耗来证明较低的阈值EP构度,从而增加了EP寿命。最近的努力成功地通过取代支持MIE-SLR的低损坏介电元表面的等离子介电元表面来减少凝结阈值。12由于SLR的高Q因子(400 - 700),部分原因是材料损失的减少,凝结阈值显着降低。在这里,我们通过
光学过滤器引起了高级光子仪器和现代数字显示器的巨大兴奋,因为它们的光谱操纵能力具有灵活性。等离子带宽,高光谱对比度和健壮的结构耐受性的等离子元面是光学效果(尤其是在可见的状态),但由于内在的欧姆损失和设计/制造偏差而宽阔的光谱扩大。此处,通过空间脱钩的凹面表面的独特结构设计,通过液体金属的模板固定效率来证明,通过在450至750 nm的光学结构设计中,证明了高性能的跨质面积。由于明显地抑制了金属损失以及界面结构的制造耐受性,因此,经过准备的凹面偏移可以使最小线宽约为15 nm,最大的光学对比度为≈93%,高度衡量的光谱匹配比率高度高度匹配比率≈1500。这些结果在第一次将基于钠的等离子设备的运行波长从红外线推向可见的运行波长,这反过来又表明了迄今为止填写商业介电光学过滤器空白的能力。
振幅[3,4]光散射的方向性[5,6]自旋[7,8]和轨道角动量[9,10],而不受金属基方法固有材料损耗的限制。特别是,由近场增强驱动的应用,如生物分子传感,依赖于高共振品质因数(Q)(定义为共振波长除以线宽),因此需要高的电磁近场强度来实现最大样本灵敏度。[11,12]从米氏理论等中得知,共振品质因数和共振器折射率[13]之间的固有相关性,因此推动了基于高折射率材料体系(如硅[14,15]锗[16,17]或磷化镓)的全电介质纳米光子学的发展。 [18,19] 尽管这些材料在近红外 (NIR) 和红外 (IR) 光谱区域具有出色的高 Q 共振特性,但由于它们的带隙能量处于中间水平,因此在整个可见光谱范围内都伴随着较高的材料固有带间吸收损耗。由于这些基本的材料限制,在整个可见光谱范围内都缺乏无损高折射率材料。[20–23] 特别是,对于可见波长范围,存在大带隙和无损材料的竞争
免责声明 本文件为美国政府机构赞助工作的记录。美国政府、劳伦斯利弗莫尔国家安全有限责任公司及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或劳伦斯利弗莫尔国家安全有限责任公司对其的认可、推荐或支持。本文表达的作者观点和意见不一定代表或反映美国政府或劳伦斯利弗莫尔国家安全有限责任公司的观点和意见,不得用于广告或产品代言目的。
MA Gorlach. et al. Nat. Commun., (2018)干法蚀刻是电介质超表面的必要部分!
摘要:纵观人类历史,对光、电和热的控制已逐渐成为各种电气和电磁技术创新和发展的基石。无线通信、激光和计算机技术都是通过改变光和其他能量形式的自然行为方式以及如何以受控的方式管理它们而实现的。在纳米尺度上,为了控制光和热,近二十年来已经开发出成熟的纳米结构制造技术,并实现了一系列突破性工艺。光子晶体、纳米光刻、等离子体现象和纳米粒子操控是这些技术成功应用的主要领域,并催生了一个被称为超材料的新兴材料科学分支。超材料和功能材料开发策略侧重于物质本身的结构,通过广泛操控光(更广泛地说是电磁波)获得了非常规和独特的电磁特性。超材料的纳米结构具有精确的形状、几何形状、尺寸、方向和排列。此类配置正在影响电磁光波,产生难以甚至不可能用天然材料获得的新特性。本综述从材料、机制和先进超器件的角度深入讨论了这些超材料和超表面,旨在为这一令人兴奋且迅速崛起的课题的未来工作提供坚实的参考。
由于其电子特性、易于制造和化学稳定性,金 (Au) 是等离子体应用中最广泛使用的造币金属。它的介电函数 ε (λ)(其中 λ 是光的波长)在可见光谱的长波长范围内产生等离子体共振。其他金属,如铝 (Al) 和银 (Ag),在较短波长范围内具有等离子体共振,但对于纳米技术来说更难。[12] 虽然 ε (λ) 的实部决定发生等离子体共振的波长,但其虚部控制等离子体共振强度。[13] 十年来,对金、银和铝替代材料的研究激增,以利用整个可见光和近红外光谱的等离子体共振。[14–16]