摘要氧化锌(ZnO)纳米颗粒是具有广泛应用潜力的多功能材料。此RE搜索的目的是合成ZnO纳米颗粒,利用甲醇中的Indigofera Tinctoria叶提取物作为一种生态友好的还原和稳定剂。合成在提取物质量方面的变化,即1 g(z1),5 g(z5)和10 g(z10),以评估提取物浓度对纳米颗粒特性的影响。ftir,XRD,SEM,XRF和UV-VIS DRS用于表征样品。FTIR分析结果显示,波数为422-430 cm -1处的典型ZnO峰。 XRD分析表明,纳米颗粒具有带有空间群p63mc的六边形wurtzite晶体结构。 随着提取物浓度在折痕中的浓度下降,总计16.55 nm(Z1),15.21 nm(Z5)和13.75 nm(Z10)。 带隙能量从3.19 eV(Z1)增加到3.21 eV(Z10),表明在较高的提取浓度下光活性增加。 通过SEM进行的形态分析表明,所有样品均表现出准球形形状。 eds表征显示仅识别Zn和O元素。 XRF结果证实了ZnO纳米ticle的原始性,ZnO含量为98.99%。 这项研究为ZnO纳米颗粒的合成中的Indigofera Tinctoria叶提取物的潜在用途提供了新的见解,可用于各种功能材料和技术应用。FTIR分析结果显示,波数为422-430 cm -1处的典型ZnO峰。XRD分析表明,纳米颗粒具有带有空间群p63mc的六边形wurtzite晶体结构。随着提取物浓度在折痕中的浓度下降,总计16.55 nm(Z1),15.21 nm(Z5)和13.75 nm(Z10)。带隙能量从3.19 eV(Z1)增加到3.21 eV(Z10),表明在较高的提取浓度下光活性增加。通过SEM进行的形态分析表明,所有样品均表现出准球形形状。 eds表征显示仅识别Zn和O元素。 XRF结果证实了ZnO纳米ticle的原始性,ZnO含量为98.99%。 这项研究为ZnO纳米颗粒的合成中的Indigofera Tinctoria叶提取物的潜在用途提供了新的见解,可用于各种功能材料和技术应用。通过SEM进行的形态分析表明,所有样品均表现出准球形形状。eds表征显示仅识别Zn和O元素。XRF结果证实了ZnO纳米ticle的原始性,ZnO含量为98.99%。这项研究为ZnO纳米颗粒的合成中的Indigofera Tinctoria叶提取物的潜在用途提供了新的见解,可用于各种功能材料和技术应用。这些结果还为开发绿色合成方法开发了纳米材料具有特征的纳米材料的机会,可以根据应用需求进行定制。
抗菌药物用于抑制和管理动植物中的传染病。当细菌不再对抗菌药物反应导致疾病的威胁延伸,可怕的感染,无能为力和到期时,就会发生抗菌耐药性(AMR)。AMR是一种通常的程序,它逐渐涉及微生物的遗传变化。人类相互作用,特别是对菌丝体调节动植物中疾病的不当利用可促进其建立和传播。在本研究中,检查了根际真菌的甲醇提取物的抗氧化剂和抗菌活性。The two rhizospheric fungal species, Fusarium incarnatum and Aspergillus ochraceous , were distinguished on the basis of distinct and microscopic features.通过技术气相色谱 - 质谱法(GC-MS)检查了上面根际真菌的51种化合物。与鳄鱼皮曲霉相比,与大肠杆菌相反,与大肠杆菌相反,与大肠杆菌和26毫米的枯草芽孢杆菌相反。在硅对接研究中进一步显示,针对四环素的所有化合物(即4.95 kcal/mol),在-6.3 kcal/mol至-3.9 kcal/mol之间的结合能,这是食品和药物管理局(FDA)的抗菌药物认可的药物之一。
简介:Mitragyna Speciosa(Korth。)或kratom包含几种具有潜在thera peutac益处的生物活性化合物。本研究研究了Mitragyna Speciosa Meth Anolic提取物(MSME)在延迟型型小鼠模型中的潜在免疫调节作用。材料和方法:MSME给药后,通过绵羊红细胞(SRBC)诱导雌性BALB/C小鼠。测量了在小鼠的右后脚下的皮下注射SRBC后产生的pAW水肿的厚ness。收集血液样本和脾脏,以研究MSME对抗体产生,完全血细胞计数(CBC),脾脏指数,脾脏增殖和淋巴细胞(CD4,CD8和CD19)种群的影响。结果:数据表明,MSME显着降低了SRBC诱导的PAW水肿,并显示出明显降低抗SRBC抗体水平。然而,在CBC,脾脏指数和CD4,CD8和CD19子集种群中未观察到显着变化。此外,用MSME处理的SRBC诱导的DTH小鼠用脂多糖(LPS)或姜黄素A(CON A)离体降低细胞增殖。结论:这些数据表明,MSME通过抑制DTH反应,减少抗体产生和细胞增殖而潜在地抑制免疫反应,而不会影响淋巴细胞谱。这些发现表明,MSME通过免疫抑制和抗炎活性具有免疫调节作用。马来西亚医学与健康科学杂志(2024)20(SUPP11):34-40。 doi:10.47836/mjmhs20.s11.6马来西亚医学与健康科学杂志(2024)20(SUPP11):34-40。 doi:10.47836/mjmhs20.s11.6
在全球可持续发展目标的推动下,海运业正在经历重大转型,在瑞典领导下的欧盟强烈提倡使用低碳替代品取代传统化石燃料。这一转变正推动全球各大港口调整其基础设施以适应电力运营,并适应甲醇等替代燃料。荷兰、西班牙、丹麦、德国和瑞典承诺将甲醇作为未来运营的核心燃料。利用城市固体废物、生物质和绿色氢气生产甲醇设施的投资正在增加,进一步表明了这一承诺。瑞典奥斯卡港正在研究现场生产甲醇的潜力,以顺应全球趋势,本研究的目的是为奥斯卡港当局提供咨询,帮助他们通过专注于两种甲醇生产路线生产甲醇:生物质制甲醇 (BtM) 和电甲醇 (e-MeOH)。
低碳甲醇可能成为近期清洁氢气需求的最重要来源。它不仅是一个需要脱碳的大型化学品市场,而且低碳甲醇也是航运业减少排放最容易获得的选择。欧盟的法规和国际海事组织的净零目标正在推动航运业采购绿色燃料。BNEF 估计,全球低碳甲醇项目的规划产能每年可消耗 165 万公吨清洁氢气。BNEF 和气候技术联盟的这份白皮书概述了氢气在甲醇生产中的作用,并概述了潜在的商业和政策考虑因素,如果实施,可能会提前实现具有成本竞争力的清洁甲醇。
本演示文稿使用了 EBITDA、调整后 EBITDA、调整后收入或调整后每股收益和自由现金流等术语。这些项目是非 GAAP 指标,没有 GAAP 规定的任何标准化含义,因此不太可能与其他公司提出的类似指标进行比较。这些指标代表归属于 Methanex Corporation 的金额,并通过排除与特定已识别事件相关的某些项目的影响来计算。请参阅本演示文稿的第 33 张幻灯片以及公司 2023 年年度 MD&A 中的“其他信息 - 非 GAAP 指标”,以在某些情况下与最可比的 GAAP 指标进行对账。
糖尿病是一个严重的全球健康问题,其特征是高血糖,是由胰岛素的绝对或相对缺乏或细胞水平上的胰岛素抵抗引起的。这项研究的目的是研究白化大鼠中grandiflora的甲醇茎皮的抗糖尿病潜力。使用标准方法确定植物化学分析,α淀粉酶和α葡萄糖酶抑制活性以及葡萄糖浓度。二十只白化大鼠被随机分为五组四只大鼠,每组1是正常对照,用糖尿病诱导了组2,未接受治疗,用Glibenclamide诱导并用Glibenclamide诱导第4组,第4组和5组被诱导并用提取物进行100天和血液限制的次数(分别为100 mgkk-1),将所有次数切成三天的间隔。结果表明,不存在酚类,碳水化合物和单宁酸,类黄酮中等量,而类固醇,皂苷,萜烯,甘氨酸,蒽醌和心脏糖苷则没有。与A. grandiflora提取物相比,标准药物Glibenclamide(98.06%)和二甲双胍(96.77%)显示出更高的α淀粉酶抑制活性。样品的5.0mg浓度显示(79.53%)抑制作用。在30.0mg/ml的样品(98.70%)中具有显着(P <0.05)的抑制作用(p <0.05),而标准药物(Glibenclamide)(Glibenclamide)(84.88%)抑制蛋白和二甲双胍表现出(88.22%)抑制性活性(88.22%)。显着(p <0.05)在治疗组中血清葡萄糖的降低显着,而(第2组)在所有大鼠中均表现出持续的糖尿病状态,证实了甲醇提取物的抗糖尿病特性。
摘要:为了实现气候目标,全球必须摆脱化石燃料。对于电气化不切实际的行业,找到可持续的能源载体至关重要。可再生甲醇因其多种可持续的生产方法而被广泛认为是一种有前途的燃料,可用于为航运、货运、农业和工业机械等重型应用提供动力。虽然目前的技术努力主要集中在航运领域的双燃料发动机上,但未来的进展取决于使用可再生甲醇的单一燃料解决方案,以实现重型领域的净零目标。本综述研究了使甲醇成为重型应用唯一燃料的技术的研究现状。文献中出现了三个主要类别:火花点火、压缩点火和预燃室系统。分析了每个概念的运行原理和效率、稳定性和排放特征。火花点火概念是一种成熟度高、经济高效的解决方案。然而,它们面临着爆震问题的限制,限制了较大孔径的功率输出。压缩点火概念本质上不会受到末端气体自燃的影响,但由于甲醇十六烷值低,因此会遇到与可燃性相关的挑战。尽管如此,仍存在各种实现甲醇自燃的方法。要在所有负载点实现稳定燃烧,需要结合多种技术。预燃室技术尽管成熟度较低,但有望通过充当分布式点火源来延长爆震极限并提高效率。此外,混合控制预燃室概念显示出消除爆震以及相关尺寸和功率限制的潜力。本评论最后比较了每种技术并确定了未来研究的差距。