与Rijksdienst Voor Ondernemend Nederland(RVO)合同,DHI A/S(DHI)在北海的荷兰独家经济区进行了详细的Metocean研究,在北海,整个模型域涵盖了荷兰海军界的所有离岸风场搜索区。这项研究的重点是OWFS IJMUIDEN VER和NEDERWIEK。Metocean研究分为两个部分:•高分辨率风,水位,电流和波浪建模,共同称为Metocean建模,涵盖了从1979年1月到2023年9月的44年以上。该模型的空间覆盖范围是图0.1所示的完整可行性域,在Ijmuiden Ver,Nederwiek和Doordewind风电场区域中具有更高的分辨率。
有足够强大的潮流或足够高的潮汐范围以使能量提取在经济上可行的沿海地区数量有限。在高能量的位点中,当前速度可以定期达到高于2.5m/s(或9km/h)的值,流动总是湍流,这会在时空和时间上产生较高的资源可变性。
• 海洋气象设计和可操作性研究,适用于海上可再生能源、石油和天然气、航运和其他蓝色经济应用。 • 系泊设计和船舶响应分析。 • 通道、操纵区和内陆水道的设计,包括操纵模拟。 • 专业港口设计和评估咨询。 • 海床动力学和冲刷防护设计 • 软件开发。 • 海洋和气象数据销售。 • 海洋治理和蓝色经济。 这些服务通过咨询和基于网络的应用程序提供。它们由一支由海洋气象顾问、海岸工程师和造船工程师组成的专门团队提供支持。 Aktis Hydraulics 高度专业化,具有将海洋学、气象学和船舶响应专业知识结合起来的独特能力。 Aktis 高度重视以实用的方式发展我们的知识和能力,使我们的客户受益并使我们的员工工作更轻松。 Aktis 的主要办事处和法律办事处位于荷兰兹沃勒,在西班牙和法国设有常设机构,我们在拉罗谢尔也设有办事处。 角色
I. 项目描述:由美国国家先进制造中心 (NCAM) 领导的路易斯安那海湾海上风电 (GLOW) EDA 技术中心将成为全球原型设计、演示和制造下一代海上能源技术的目的地,重点是海上风电 (OSW)。利用路易斯安那州在海上能源生产、专业基础设施和强大的能源研发生态系统方面的领导地位,GLOW 将加速风能技术和供应链解决方案的商业化(KTFA #9:先进能源和工业效率技术)。GLOW 将运营由路易斯安那州矿产能源委员会提供的首个多用途海上示范区,以及由海湾风能技术运营的陆上研发涡轮机,并将聘请当地研究人员管理为期 3 年的海洋气象活动,以开发宝贵的气候、水动力和环境数据。 Offshore Propeller 提供的数据将输入到 NCAM 和 Sev1tech 的墨西哥湾海上示范区和计划中的风能区的数字孪生中,使 GLOW 创新者能够研究性能问题、提出可能的改进方案并降低未来物理试点的风险。这种虚拟产品开发环境将加速 Vestas 和西门子歌美飒可再生能源等主要行业合作伙伴开发海上能源解决方案。GLOW 还将培养一支本地的、有竞争力的劳动力队伍,为下一代海上能源生产和制造做好准备。总而言之,GLOW 拥有独特的优势,可以支持先进技术、国内制造和 OSW 供应链效率,重点是劳动力发展,从而增强美国在全球能源转型中的竞争力。
海洋能源管理局(BOEM)提议在Morro Bay和Humboldt Weas内发行多达五(5)个租约(港口总计五项租约)和赠款权利(行)和使用权和使用权和使用权和地役权和地役权(RUUE),以支持风能开发中部和北加州风能开发。BOEM预计,现场表征将采用高分辨率地球物理(HRG)调查,该调查将使用以下设备进行:swath测深度测定系统,磁力计/渐变计,侧扫声纳,侧扫声纳以及浅层和中等(地震)子底部profiller系统。该设备没有与海底接触,通常是从不需要锚定的移动调查船上拖走的。岩土测试或抽样涉及海底令人不安的活动。岩土技术研究可能包括使用重力核,活塞芯,颤音,深钻和锥体穿透试验(CPT)等。站点表征将为部署和退役元波浮标所需的站点评估计划(SAPS)提供信息。拟议的联邦行动包括项目设计标准(PDC)和最佳管理实践(BMP),用于BOEM在该学士学位中得出的任何活动,以对受保护物种产生潜在的不利影响。Boem根据太平洋OC的相关经验以及与NMFS大大西洋地区办事处的协调,以SAPS提交给Boem的大西洋OCS,得出了这些BMP。BOEM将通过发行租赁并通过标准运营条件(SOCS)来实施BMP。
此次探险队配备了最先进的萨博剑齿虎自主水下航行器 (AUV),这种航行器能够部署到 3,000 米深的水下,并装有一系列传感器,以便定位、成像、拍摄和扫描“坚忍号”沉船。探险队科学团队汇集了海冰科学家、海洋学家、气象学家和海洋工程师,以研究南极海冰,进一步了解周围威德尔海和南大洋的环境变化,同时还提供帮助寻找“坚忍号”沉船和加深对船冰相互作用的理解的运行数据。此外,从这些科学研究中收集的数据将有助于改进未来的海冰导航系统。本报告总结了开展的科学研究,展示了初步结果,并列出了创建的数据集及其访问方法。开发新的海冰信息系统 Endurance22 是当今在海冰中航行和有效工作的作战能力的案例研究,并为下一代冰信息系统定义了基准。今天,创建海冰图表仍然是一项非常繁琐且耗时的工作。特别是在南极洲,几乎没有海冰信息来支持航运作业,因为没有专门的国家冰服务机构负责(尽管挪威和美国冰服务机构每周提供冰
1。引入美国沿海地区的风力涡轮机,包括大西洋,墨西哥湾和加勒比恩海湾,以及东太平洋外大陆架区域,面临热带气旋(TCS)(TCS)和热带气旋(ETCS)的巨大风险。这些极端的天气事件会通过风阵风,快速风向变化,极端的波浪和大量降水,影响涡轮机叶片,地基,电力系统和其他基础设施。关于极端天气负荷的历史数据有限,从而使脆弱性评估具有挑战性。例如,由于米托斯元素条件低估,北海80%需要维修(Diamond 2012)。尽管在欧洲海上风能系统中产生了这些恶劣的天气影响,但这种情况并不代表美国近海地区的极端状况,造成飓风有时会袭击。相反,位于北太平洋西部的亚洲海上涡轮机遭受了台风的破坏(Li等人2022)尽管几乎无法获得详细的损害评估和数据共享。为了实现拜登 - 哈里斯政府的目标,到2030年,有必要将海上风能开发扩大到美国飓风的美国地区并应对技术挑战(Musial等人。2023)。这种扩展需要了解系统鲁棒性的风险,改善和建立弹性,尤其是面对北大西洋越来越频繁的主要飓风(Vecchi等人)(Vecchi等人。2021)。到此为止,主持了两次面对面的研讨会。1)。当前的工程实践遵守国际电子技术委员会(IEC)标准,对于热带参考涡轮级(T级)涡轮机,该标准要求将参考风速从50增加到57 m s-1。此外,这些实践需要湍流的极端风速模型,该模型的塔和刀片的回流时间为50年,并且子结构的返回期为500年(例如,单波管和夹克; 61400-3 IEC 2019)。但是,对设计标准的这种调整可能无法完全涵盖飓风事件的复杂性或各种破坏性负载案例的复杂性。为了增强易受飓风易发的区域的涡轮弹性,需要对大气和海洋状况的更深入的理解和改进的建模。美国能源部(DOE)的能源效率和可再生能源办公室(EERE)旨在通过研讨会和协作工作来满足利益相关者的需求和研究优先事项。第一次会议于2023年6月在阿贡国家实验室举行,重点是在国家实验室,监管机构,学术界和工业之间进行对话(图第二次会议于2023年11月在国家科学基金会(NSF)国家大气研究中心(NCAR)举行,随后进行了研究进度,并确定了加强行业与科学社区之间合作的挑战。两次会议旨在解决大型海上风能部署的建模,观察和工程挑战,并指导EERE未来几年的研究方向。