由 OHB Sweden 牵头的财团已开始为可能的北极气象卫星 (AWS) 星座任务实施一颗原型卫星。这个低极轨道上的小型卫星星座将频繁覆盖极地地区,以支持改进北极和南极地区的临近预报和数值天气预报 (NWP)。AWS 任务旨在补充现有的极地轨道气象卫星(例如 MetOp 和 MetOp 第二代 (SG)),提供额外的大气探测信息以改进全球范围内的 NWP。这颗重 120 公斤的 AWS 原型卫星将在约 600 公里的太阳同步轨道上飞行,并基于 OHB Sweden 的 InnoSat 平台。有效载荷是 Omnisys Instruments 的交叉轨道扫描被动微波辐射计,具有 4 个频段,可提供大气探测信息,补充 MetOp-SG 上的微波辐射计。全球数据将存储在卫星上,用于特定区域的数据转储以及实时全球广播。地面部分包含泰雷兹公司高度创新的数字波束形成网络 (DBFN) 地面站,可同时跟踪多颗卫星。预计最终的卫星群将为整个北极地区提供延迟时间少于 30 分钟的数据。
与此同时,在地球观测领域,随着 ERS-1 发射越来越近,欧洲航天局正在考虑如何继续和扩展所提供的服务。1988 年,这些要素被整合到一份欧空局向其成员国提出的“地球观测总体战略”提案中。这些考虑促使 1991 年 11 月在慕尼黑举行的部长理事会会议上通过了使用极地平台的 POEM-1 计划。POEM-1 的有效载荷补充不断演变。最终将有效载荷分成独立的 Envisat 和 MetOp 卫星,这最终在 1992 年 11 月在格拉纳达举行的下一届部长理事会上达成一致。1992 年 7 月,用于采购和支持 Envisat 有效载荷的 C/D 阶段合同(所谓的“任务主合同”)被授予 Dornier Satellitensystem(现为 Astrium GmbH)。
与此同时,在地球观测领域,随着 ERS-1 发射越来越近,欧洲航天局正在考虑如何继续和扩展所提供的服务。1988 年,这些要素被整合到一份欧空局向其成员国提出的“地球观测总体战略”提案中。这些考虑促使 1991 年 11 月在慕尼黑举行的部长理事会会议上通过了使用极地平台的 POEM-1 计划。POEM-1 的有效载荷补充不断演变。最终将有效载荷分成独立的 Envisat 和 MetOp 卫星,这最终在 1992 年 11 月在格拉纳达举行的下一届部长理事会上达成一致。1992 年 7 月,用于采购和支持 Envisat 有效载荷的 C/D 阶段合同(所谓的“任务主合同”)被授予 Dornier Satellitensystem(现为 Astrium GmbH)。
该项目由欧洲、德国、荷兰、挪威、西班牙、瑞典、瑞士和英国共同资助,并负责设计和开发第一颗卫星作为 EPS 的空间段。EPS 计划正在资助建造两颗循环卫星、发射所有三颗卫星以及设计和建造地面段以操作卫星并处理、存档和分发收集的数据。EPS 的设计总运行寿命为 14 年。EPS 计划还为 ESA MetOp-1 计划提供资金和物质捐助,提供 7.46 亿欧元成本的 36%(当前条件)。因此,ESA/Eumetsat 单一空间段团队成立,通过与工业总承包商(EADS-Astrium,图卢兹,法国)签订联合合同来管理 MetOp 的开发。虽然这种安排不可避免地会导致官僚主义加剧,并且可能
为了满足我们技术社会的需求,近地空间的卫星数量正在迅速增加。这些卫星预计将在受到强烈粒子辐射的轰击时持续运行,这些辐射可能会损坏电子元件,导致暂时故障、性能下降或整个系统/任务失败。我们尽一切努力设计能够承受恶劣环境的卫星,但在轨道上仍然会出现问题。当出现问题时,有必要找出原因,以便采取适当的措施保护资产并恢复正常运行。然而,诊断与空间天气相关的异常具有挑战性,因为它需要广泛的环境信息、工程知识和专业知识。我们的目标是通过提供将所有必要组件整合在一起并简化最终用户的分析过程的工具来实现有效的异常分析和归因。在这里,我们讨论了我们为构建全面的卫星异常归因工具所做的努力。我们介绍了一些正在进行的项目,包括开发高能电子辐射带模型 (SHELLS)、卫星充电评估工具 (SatCAT) 和太阳质子访问模型 (SPAM)。 SHELLS 电子辐射带模型使用神经网络来绘制从低空到高空填充内磁层的实时高能电子通量。一旦建立了映射,就可以仅使用近乎实时的 POES/MetOp 数据来指定过去和未来的高能电子通量。SatCAT 工具是一个在线系统,允许用户创建在轨卫星当前和历史内部充电水平的时间线,以便与异常时间进行比较。该工具是可配置的,允许用户生成和查看其卫星的内部充电水平以及设计参数,例如屏蔽厚度和材料。最后,太阳质子接入模型 (SPAM) 使用低空 POES/MetOp 测量来绘制整个磁层的太阳质子通量。
与此同时,在地球观测领域,随着 ERS-1 发射越来越近,欧洲航天局正在考虑如何继续和扩展所提供的服务。1988 年,这些要素被整合到一份欧空局向其成员国提出的“地球观测总体战略”提案中。这些考虑促使 1991 年 11 月在慕尼黑举行的部长理事会会议上通过了使用极地平台的 POEM-1 计划。POEM-1 的有效载荷补充不断演变。最终将有效载荷分成独立的 Envisat 和 MetOp 卫星,这最终在 1992 年 11 月在格拉纳达举行的下一届部长理事会上达成一致。1992 年 7 月,用于采购和支持 Envisat 有效载荷的 C/D 阶段合同(所谓的“任务主合同”)被授予 Dornier Satellitensystem(现为 Astrium GmbH)。
与此同时,在地球观测领域,随着 ERS-1 发射时间越来越近,欧洲航天局正在考虑如何继续和扩展所提供的服务。1988 年,这些要素被纳入欧空局向其成员国提出的总体“地球观测战略”提案中。这些考虑促使 1991 年 11 月在慕尼黑举行的部长理事会会议上通过了使用极地平台的 POEM-1 计划。POEM-1 的有效载荷补充不断发展。最终将有效载荷拆分为独立的 Envisat 和 MetOp 卫星,并在 1992 年 11 月于格拉纳达举行的下一届部长级会议上最终达成一致。1992 年 7 月,Dornier Satellitensystem(现为 Astrium GmbH)获得了用于采购和支持 Envisat 有效载荷的 C/D 阶段合同(即所谓的“任务主要合同”)。
与此同时,在地球观测领域,随着 ERS-1 发射越来越近,欧洲航天局正在考虑如何继续和扩展所提供的服务。1988 年,这些要素被整合到一份欧空局向其成员国提出的“地球观测总体战略”提案中。这些考虑促使 1991 年 11 月在慕尼黑举行的部长理事会会议上通过了使用极地平台的 POEM-1 计划。POEM-1 的有效载荷补充不断演变。最终将有效载荷分成独立的 Envisat 和 MetOp 卫星,这最终在 1992 年 11 月在格拉纳达举行的下一届部长理事会上达成一致。1992 年 7 月,用于采购和支持 Envisat 有效载荷的 C/D 阶段合同(所谓的“任务主合同”)被授予 Dornier Satellitensystem(现为 Astrium GmbH)。