1,东京大学,邦基库(Bunkyo-Ku),东京,东京113-8656,工程学院化学与生物技术系,日本; 2关于上材料的研究计划,新生大学,瓦卡托,长野,380- 8533,日本关键词:液晶,自组织,纳米结构,纳米结构,超分子装配超分支超分子自我组成的liqiud-crystalline(lc)Molecules的liqiud-crystalline(LC)分子的变化,这是一定的变化,因为这是一定程度上的变化,因为它是一种变化,因为它是一种变化,因为它是一种变化,而有效地a了,这是一定的变化。由于这些动态和自组织的结构,可以诱导作用,光功能和生物功能。分子结构的设计和分子相互作用的控制是获得高功能性LC纳米组件的关键。1-7,纳米结构功能LC材料在1D,2D和3D纳米结构的设计和自组织方面呈现。材料设计与分子动力学(MD)3,8,9模拟和高级测量10,11的协作。例如,近晶型LC材料已应用于2D纳米结构的电解质7,12和水处理膜3,13。稳定的行为是2D LC电解质的锂离子电池。7,12高病毒去除,用于保留从相分离的2D近晶结构的纳米结构聚合物。通过MD模拟和X射线光谱研究了1D,2D和3D纳米结构及其高级功能的3,13关系。8,9,10,11,例如,2D相结构及其近晶型电解质摩勒的跃迁通过X射线和MD模拟获得的电子密度图的结果很好地解释了。9此外,通过对同步加速器设施的软X射线排放研究很好地解释了纳米多孔水处理LC膜的选择性特性。11液晶在基于自组织动态结构的性质的各个领域具有高功能性软物质具有巨大的潜力。致谢:对Kakenhi JP19H05715,JST-CREST JPMJCR1422,JPMJCR20H3和MEXT材料R&D Project JPMXP1122714694的财务支持。
kek为来自日本和国外的学术界和工业的研究人员带来了独特的科学机会,涵盖了加速器科学,粒子物理,核物理,宇宙学,材料科学和生命科学。Kek分别在其Tsukuba和Tokai校园内运营并开发了世界领先的电子和基于质子的加速器设施。使用来自这些设施的各种梁,Kek研究了自然的基本定律和材料功能特性的起源。SAC在KEK目前正在进行的大量活动印象深刻。这些活动的水平很高,通常在国际上具有竞争力。Superkekb和Belle II有望在2024年数据获取的亮度和探测器性能方面具有出色的开端。Superkekb长时间关闭后,LS1,碰撞于2024年2月重新启动。在关闭之前已经达到的高光度非常令人鼓舞,并将中期目标置于10 35 cm-2 s-1孔。随着这种持续改进,Belle II将保留在风味物理的前沿,在LS2之前,LS2的光度为2×10 35 cm -2 s -1的目标。它在与CERN的LHCB保持竞争性方面的成功将取决于提供的大量梁时。6×10 35 cm -2 s -1的亮度的长期目标仍然是一个重大挑战。SAC期待2024年预期的进度。,由于SuperKekb在KEK设施中具有最高的功率需求,因此实现这一目标将需要管理层大量的努力。国际社会兴奋地等待了Hyper-Kamiokande项目。在快速提取质子束中的进展非常令人印象深刻,显示出稳定的763kW操作。到2027年,质子束功率为1.2MW的目标,即Hyper-Kamiokande的开始。SAC还期待着有关近探测器开发的进度报告,其发展必须与光束发展相吻合。在ICFA国际发展团队(IDT)和日本HEP社区的鼓励下,Kek从MEXT获得了ILC技术网络(ITN)的五年资金,从而使ILC开发资金增加了一倍。这已经为欧洲的ILC提供了额外的支持。