根据艺术,欧洲委员会是宪法的权利和正义状态。厄瓜多尔共和国宪法的 1;因此,由构成公共部门的实体进行的政府购买必须获得宪法支持;以这种美德,艺术。288同上,明确确定:“公共购买将符合效率,透明度,质量,环境和社会责任的标准。将优先考虑国家产品和服务的优先级,特别是来自受欢迎的和团结的经济,以及来自微型,中小型生产单位”;即《数字2》第168条中厄瓜多尔的宪法确定司法职能将享有行政,经济和财务上的第177条;司法规定了司法机构的第177条。行政机构,辅助机构和自主器官。 div>在其能力范围内,司法职能的人类,财务,行政资源的管理以及选择,评估,专业培训和持续培训的过程; 2。 div>司法职能行使法律,司法和法外表征; (…)”;那是国家公共采购系统有机法第6条(以下简称thenc)的第9条数字,确定了:“代表团。 div>,如果承包实体的内部法规考虑到门户管理员,则表示无需指定(…)”;该决议编号编号法律将确定其结构,职能,归因,权力和适当司法执行所必需的一切”;第178条,第二小节,同上,司法机构理事会是政府的机构,政府的机构,行政,监视和纪律的司法职能”;该规定的第226条,他们的统治,他们的统治,他们的统治。机构。根据国家权力行事的人只会行使宪法和法律中归因于他们的权力和权力,将有责任协调行动以实现其目的,并有效地享有和行使《宪法》中认可的权利(…)的享受和行使;这是第254条,第254条,在这里,司法机构的行动是司法机构的第一个小节,是裁定的单一范围,是裁定的单一范围。司法功能,包括:司法机构,行政机构,辅助机构和自治机构(…)”;该司法委员会总干事的职能为“ 1”2023年7月7日的007-2023当时的国家行政主任任命为ABG。 div>Maria Gabriela Armijos Aguilar,公共承包分析2作为司法委员会公共购买门户的管理员; div>- 在行使其能力和一定时间内,通过最高权威的器官的某些力量和器官的某些力量的翻译。 ”;这是国家公共采购系统的次要法规-SNCP在其第23条中建立“(…)门户管理员用户的指定是合同实体的最高权威的责任,为此,实体必须维护文件。 div>
当前的工作旨在计算六个样本的伽马射线屏蔽系数。样品为65b 2 O 3 .20bi 2 O 3 .10Al 2 O 3。(5-X)MGO。XMNO(0≤x≤1mol%)。使用熔体淬火方法准备了这些样品。该研究测量MAC(质量衰减系数)和线性衰减系数(μm,μ)。它还计算半价值层,十值层(TVL)和平均自由路径(MFP)。使用PHY-X/PSD和XCOM程序进行计算,以1keV-100GEV为单位。该研究讨论了将结果彼此比较,表明了良好的一致性。该研究显示了许多结果,例如何时能量高于10 MEV。低光子能区域中有许多峰(<0.1 MEV)。具有最大MNO组成S6的玻璃样品显示了M-,L-和K-吸收光电边缘的许多峰。PHY-X/PSD和XCOM软件产生的测量值显示出良好的一致性。另外,HVL与材料密度之间存在负相关。此外,随着光子的入射能增加到5 MeV,MFP和HVL值开始较低,不断增加。超过5 MeV,具有能量,HVL和MFP轻轻掉落。半价值层值随密度和MNO内容的增加而下降。
使用植物提取物(例如Ocimum Basilicum L.(OBL)种子)的绿色合成,由于其可持续和环保的性质引起了人们的关注。在这项研究中,使用OBL种子提取物在500°C和600°C的两个不同的钙化温度下使用OBL种子提取物合成Zno-MGO-MN 2 O 3纳米复合材料,并根据光催化施用和细胞毒性进行评估。植物化学物质充当生产路线中的减少和掩盖剂,从而导致具有独特特性的纳米材料形成。表征技术,包括XRD,FE-SEM和DRS,用于分析纳米复合材料的结构,形态和光学特征。XRD结果证实,晶体尺寸从〜32 nm(500°C)增加到〜84 nm(600°C)。另外,Fe-Sem图像显示出不规则形状的纳米复合材料的形成,样品的EDX光谱证实了锌,镁,锰和氧元素的存在。研究了不同有机污染物的纳米复合材料的光催化行为。eriiochrome黑色T染料的去除百分比为97%(pH = 10持续90分钟),甲基蓝色染料的99%(pH = 10,为60分钟),甲基橙色染料的89%(pH = 105分钟),Rhodamine b Dye(pH = 3 = 3 = 3 = 3 = 3 = 3 = 3.0分钟)。 此外,在4T1细胞系上评估了在500°C下合成纳米复合材料的细胞毒性,以投资其对生物系统的影响,并获得了IC 50值在323 µg/mL左右。eriiochrome黑色T染料的去除百分比为97%(pH = 10持续90分钟),甲基蓝色染料的99%(pH = 10,为60分钟),甲基橙色染料的89%(pH = 105分钟),Rhodamine b Dye(pH = 3 = 3 = 3 = 3 = 3 = 3 = 3.0分钟)。此外,在4T1细胞系上评估了在500°C下合成纳米复合材料的细胞毒性,以投资其对生物系统的影响,并获得了IC 50值在323 µg/mL左右。
“Pomnik – Centrum Zdrowia Dziecka” 研究所 临床生物化学系 Agata Anna Cisek,文学硕士 产甲烷古菌在儿童非特异性炎症性肠病中的作用 医学博士学位论文 指导老师:Prof.哈博士n. med. Bożena Cukrowska 联合导师:Dr hab. n. 医学. Edyta Szymańska 华沙 2024
b非洲可持续农业研究所(ASARI)Mohammad VI理工大学(UM6P),Laayoune,摩洛哥C C C型化学系,沙特国王大学,里亚德大学11451年,沙特阿拉伯,阿拉伯人11451 Sheffield,S1 3JD,英国,在这项工作中,纯和MG-CU共掺杂的氧化锌薄膜都是由Sol-Gel Spin涂层技术制备的。微观玻璃基板用于合成薄膜。通过X射线光谱(XRD),光致发光光谱(PL),扫描电子显微镜(SEM),紫外线可见光谱(UV-VIS)和能量分散X射线分析(EDX)检查薄膜。XRD揭示了膜的六边形Wurtzite阶段。对于纯和MG-CU共掺杂的ZnO,观察到的晶粒尺寸分别为23.34 nm至15.94 nm。SEM图像显示了晶粒尺寸的增加,并通过MG-CU共掺杂表面平滑。通过EDX分析证实了ZnO纳米膜中Mg和Cu的存在。紫外线分析显示,掺杂的透射百分比增加。TAUC关系用于估计样品的带隙,并观察到带隙的显着转移。光致发光图显示出更大的发射和掺杂的表面缺陷。可见的光谱完全被低水平的发射覆盖。(2024年7月1日收到; 2024年10月8日接受)关键字:掺杂;传播;纳米颗粒;光致发光1。[3,4]。引言Nano材料有可能通过提高能源转换,存储和传输的效率来彻底改变能源领域。纳米材料可以设计为具有独特且通常是出乎意料的特性,这些特性在散装材料中没有看到,这使得它们对能源应用特别有希望。在当今时代,纳米赛车在舒适人类的能源生产和分配方面做出了巨大的改进。现代技术进步,最终要求更有效的物理和化学技术来开发和生产高级系统,以及不同形式的能源的转换。尽管有一个事实,即尚未耗尽全球化石资产,但是我们目前使用的不同形式的能源的不适当模式的破坏性健康,社会和生态效应是显而易见的[1,2]。能源生产的最大规模替代品以维持和改善由于人口增长和全球化的生命标准,并改善了我们的生活标准素。似乎很可能会增加温室气体的排放,并在未来50年中导致未来的全球变暖。能源与气候变化之间的联系强调了迫切需要过渡到更可持续和弹性的能源系统,该系统可以支持经济发展并改善人民和地球的福祉。这需要政府,企业和个人的共同努力,以优先考虑和投资清洁能源技术和实践,并减少经济各个部门的温室气体排放。
摘要。这项研究研究了MGTIO 3钙钛矿材料的电子,光学和结构特性,无论是纯还是掺杂氮(N)和磷(P)等元素。调查利用了WIER2K代码中实现的GGA-MBJ近似值的密度功能理论(DFT)。结果表明,在具有y(n和p)的氧气位置,掺杂mgtio 3的带隙能显着低于纯MGTIO 3的带隙能量,其带隙为2.933 eV。,特别是在n和p的情况下,频带间隙降至1.74和0.65 eV,此外,费米能(EF)水平在P型半导体(SC)中向价带(VB)移动。此外,我们已经分析了这些系统的光学特性,包括它们的介电函数(εଵ和εଶ),光导率(𝜎),吸收系数(α)和折射率(n)。此外,用n和p掺杂会增加可见光光谱中的吸收,这在光照下会提高光催化活性,因为掺杂的材料的价和传导带更容易地产生氢。上面的发现表明,这些材料具有广泛的应用,包括光电设备的创建。
MG-ION电池(AMIBS)具有良好安全性,低成本和高特定能量的优势,已被认为是一种有希望的能源存储技术。然而,阿米布的性能始终受到缓慢的扩散动力学的限制,以及由高电荷密度Mg2Þ与宿主材料之间的强静电相互作用引起的阴极材料的结构降解。在这里,层状结构化的NiOOH作为碱性电池的传统阴极,最初被证明可以实现质子辅助的Mg-(de)Intercration Intercration Chemistriation,具有高排放平台(0.57 v)中性水解中性水解的化学。从唯一的核心/壳结构中构成的好处,由此产生的NiOOH/CNT阴极达到了122.5 mAh G 1的高容量和长周期稳定性。进一步的理论计算表明,水合Mg 2的结合能更高
Tuning structural, electrical, dielectric, and magnetic properties of Mg-Cu-Co ferrites via dysprosium (Dy 3+ ) doping Maria Akhtar a , M. S. Hasan b , Nasir Amin a , N. A. Morley c , Muhammad Imran Arshad a * a Department of Physics, Government College University, Faisalabad, 38000, Pakistan.B物理系,拉合尔大学,拉合尔1公里,拉合尔路1公里,巴基斯坦54000。 c材料科学与工程系,英国谢菲尔德大学,S1 3JD。 *通讯作者:miarshadgcuf@gmail.comB物理系,拉合尔大学,拉合尔1公里,拉合尔路1公里,巴基斯坦54000。c材料科学与工程系,英国谢菲尔德大学,S1 3JD。 *通讯作者:miarshadgcuf@gmail.comc材料科学与工程系,英国谢菲尔德大学,S1 3JD。*通讯作者:miarshadgcuf@gmail.com
这是根据Creative Commons归因许可条款(https://creativecommons.org/licenses/4.0)的开放访问工作。请注意,重复使用,重新分配和复制尤其要求作者和来源被记住,并且单个图形可能需要特别法律规定。该许可受Beilstein档案术语和条件的约束:https://www.beilstein-archives.org/xiv/terms。这项工作的确定版本可以在https://doi.org/10.3762/bxiv.2024.61.v1
Table 1 Lattice parameters of the as-prepared samples Parameters x = 0.0 x = 0.125 x = 0.25 x = 0.375 x = 0.5 β (degree) ±0.05 0.1518 0.1812 0.1940 0.2627 0.8281 D (nm) ±0.05 57.33 48.02 44.87 33.14 10.51 d (Å) 2.5234 2.5221 2.5213 2.5188 2.5149 a (Å) 8.3694 8.3647 8.3622 8.3542 8.3410 V (Å) 3 586.25 585.27 584.75 583.06 580.31 L A (Å) 3.6239 3.6219 3.6208 3.6173 3.6116 l b(Å)2.9585 2.9569 2.9560 2.9532 2.9485γ(Å)0.7495 0.7491 0.7488 0.7481 0.7469 D x(g /cm 3)5.1385 5.2448 5.2448 5.2448 5.3471 5.3471 5.4606 5.4606 5.55848 S(MON 33.15 102.15 P 227.19 190.42 177.98 131.57 41.81 𝜀0.0020 0.0020 0.0024 0.0026 0.0026 0.0036 0.0112δ×10 -4(nm -2)±0.05 3.05 3.04 4.33 4.33 4.96 4.96 9.10 9.10 90.40