图 5-16 由于 ADC 孔径不确定性(抖动)导致的采样幅度误差 ............................................................................................................................. 102 图 5-17 预测的 AD6644 SNR 与各种模拟输入频率的时钟抖动 ............................................................................................................. 103 图 5-18 典型的高质量本振 SSB 相位噪声规格 ............................................................................................................................. 105 图 5-19 由于 DNL 导致的 ADC 量化误差 [Brannon 之后,111] ............................................................................. 106 图 5-20 高性能 AD6644 14 位多级 ADC 的架构 [模拟,107] ............................................................................................. 106 图 5-21 应用宽带抖动来改善 ADC SFDR ............................................................................................. 107 图 5-22 添加抖动信号后 AD6644 杂散性能的改善[模拟,107] ................................................................................ 108 图 5-23 由于 HF 拥塞而预测的平均可用抖动功率(下限) ................................................................................................ 109 图 5-24 数字下变频器 ........................................................................................ 110 图 5-25 NCO 作为复杂(正交)直接数字合成器 ............................................................. 112 图 5-26 实用抽取 CIC 滤波器 - 积分器,抽取
大多数无线局域网标准(如 IEEE 802.11 a/b/g [1–3])都不符合低成本设计目标,因为这些标准对误码率 (BER)、范围和数据速率都有很高的要求。为了满足低成本要求,需要制定一个性能约束较低的标准,以满足工业和商业、家庭自动化、个人电脑 (PC) 外围设备、消费电子产品、个人保健以及玩具和游戏等成本敏感型应用的需求。为此,IEEE 最近批准了 802.15.4 标准,可在 868/915 MHz 和 2.4 GHz 下运行 [4]。本文介绍了 868/915 MHz ZigBee 收发器的自上而下系统设计和仿真,并推导出一组符合 IEEE 802.15.4 物理 (PHY) 层标准要求的系统级无线电规范。系统级无线电规范包括系统噪声系数、灵敏度、本振相位噪声、信道整形和选择滤波器的阶数、互调特性、模数转换器和数模转换器 (ADC/DAC) 的位分辨率、信道抑制性能和频谱整形。本文还讨论了采用 0.18 µ m 互补金属氧化物半导体 (CMOS) 技术实现单芯片低功耗低成本 ZigBee 收发器的电路拓扑。
尽管该系统在白天工作正常,但问题也随之显现。首先,在系统初始实验室测试中使用的信道模拟器是基于最早接收到的路径最强这一假设建模的。实际上,据观察,在距离发射机 40 公里处,在第一个天波信号之前接收到了一个微弱的地波信号。这一观察结果使得信道模拟器能够进行调整,并且接收器算法能够为后续测试进行更改。在晚上还观察到了另一个问题,此时电离层 D 层的吸收减少,导致信号反射增多,从而超出了保护间隔可以应对的最大延迟扩展(稳健模式 B 为 5 毫秒)。同时,模式 B 的多普勒扩展最大值也被超出。为了克服这些问题,需要提高原型 DRM 系统模式对多普勒和延迟扩展的稳健性。因此,2001 年,两种额外的 OFDM 模式(称为模式 C 和 D)被引入到 DRM 系统规范中。
因保修索赔而退回的管子通常会被送往最初购买的 Varian 授权经销商或 OEM。如果直接退回 Varian 制造工厂,则应通知最初购买的 Varian 授权经销商或 OEM,以防有特殊指示。所有因保修索赔而退回的产品必须通过预付运费运送,并附上一份填写完整的服务报告表副本,每件发货的产品都附有一份该表格。没有此表格,保修索赔就无法处理。原始发票、销售单或其他购买文件的副本应包含在已执行的服务报告表中,以确定购买日期和价格。任何保修索赔退货都应始终使用 Varian 原始运输纸箱和包装材料。由于包装不当而导致的运输损坏通常会妨碍任何保修调整,因为损坏通常会使任何测试或测量都无法进行。
FA Viola 博士、B. Brigante、P. Colpani、G. Dell'Erba 博士、Dario Natali 教授、M. Caironi 博士,意大利理工学院纳米科学与技术中心@PoliMi,地址:via Pascoli 70/3,邮编 20133 米兰,意大利。电子邮件:mario.caironi@iit.it Dr. V. Mattoli 微型生物机器人中心,意大利理工学院,viale Rinaldo Piaggio 34, 50125 Pontedera (PI), 意大利 Prof. D. Natali 米兰理工大学电子、信息和生物工程系,via Ponzio 34/5, 20133 米兰,意大利 关键词:印刷电子、RFID、二极管、整流器、有机半导体
高级DSP SQ TM降噪技术比其他任何其他听力设备的集成设备更少的噪音和嘶嘶声更少,带有DSP循环驱动器的颈循环 /挂绳可改善T-coil用户的聆听体验,最小的设备更容易佩戴,并且可以使场地更易于分配,储存和维持高级绿色电池的范围,并降低了越来越多的绿色电池,而越来越多地降低了越来越多的范围,而越来越多地降低了越来越多的电池,而越来越多地降低了数量的范围。在满足辅助聆听
Kinetis®K81MCU扩展了Kinetis MCU投资组合,具有高级安全功能,包括防僵局外围设备,启动ROM,以支持加密的固件更新,外部串行闪存闪存,AES加速器,AES加速器的自动解密,以及对公开密钥密钥的硬件支持。K81 MCU可用于满足销售点(POS)应用程序的安全标准。
摘要 — 本文介绍了一种 28 nm CMOS 工艺的四阶 100 MHz 带宽连续时间 (CT) delta-sigma 调制器。介绍了一种初步采样和量化 (PSQ) 技术,该技术几乎可以充分利用量化时钟周期,从而在 0.65 过量环路延迟 (ELD) 系数下延长后端量化器 (QTZ) 的可用转换时间。使用 PSQ,后端 QTZ 的采样和量化分为粗采样和细采样两个步骤,类似于子范围架构以节省功耗。QTZ 以 2 GHz 运行,仅需 1.4 mW 功率即可实现 7 位 (1 b 纠错)。通过在前馈 (CIFF) 拓扑中的积分器级联中添加前馈 ELD 补偿路径,此设计中只需要一个数模转换器 (DAC)。该调制器的信号带宽为 100 MHz,信噪比 (SNDR) 为 72.6 dB,功耗仅为 16.3 mW(1.1 和 1.5 V 电源供电)。原型的动态范围为 76.3 dB,Schreier FoM 为 174.2 dB,有效面积为 0.019 mm 2 。
国防部用于支持人员恢复和搜索与救援的 406 MHz 紧急信标和其他紧急报告设备 发起部门:国防部政策副部长办公室 生效日期:2023 年 2 月 9 日 可发布性:已获准公开发布。可在指令司网站 https://www.esd.whs.mil/DD/ 上查阅。重新发布和取消:国防部指令 3002.02,“国防部人员恢复和 406 MHz 搜索与救援 (SAR) 紧急信标”,2013 年 1 月 11 日,经修订。批准人:国防部政策副部长 Colin H. Kahl 目的:根据国防部指令 (DoDD) 5111.01 和 5111.10 以及 2006 年 11 月 30 日国防部副部长备忘录中的授权,本公告制定政策并分配 406 兆赫 (MHz) 信标的职责,用于搜索和救援 (SAR) 和人员恢复 (PR) 任务,并支持《国际航空和海上搜索和救援 (IAMSAR) 手册的国家附录》和《国家搜索和救援计划 (NSP)。
分析表明,P 的值(遥测链路不可用性)不会显著影响 pfd 值。pfd 值主要由 ( I / N ) 的值决定。对于给定的 P ,可用范围 R 的减少是 ( I / N ) 的函数,可以通过公式 (7) 确定对遥测链路的影响,因为对于固定的发射机功率,R 2 ∝ 1/( N + I) 。图 4 显示了可用范围的减少是 ( I / N ) 的函数。当 ( I / N ) 值大于 1(0 dB)时,对遥测链路设计的影响会变得严重,因为链路必须设计为克服干扰而不是内部噪声。最大实际值被认为约为 0.5 ( − 3 dB),期望值更小。