由于细菌和昆虫广泛分布于全球,因此细菌和昆虫之间的相互作用会对许多不同领域产生重大影响。由于昆虫是疾病传播的媒介,细菌与昆虫之间的相互作用可能会直接影响人类健康,而且它们之间的相互作用还可能产生经济后果。此外,细菌与昆虫之间的相互作用还与经济上重要的昆虫的高死亡率有关,从而造成巨大的经济损失。微小RNA(miRNA)是一种非编码RNA,参与转录后基因表达的调控。miRNA的长度为19至22个核苷酸。除了能够表现出动态表达模式外,miRNA还具有多种靶标。这使它们能够控制昆虫的各种生理活动,如先天免疫反应。越来越多的证据表明,miRNA通过影响免疫反应和其他抗性机制,在细菌感染中发挥着至关重要的生物学作用。本综述重点介绍了近年来的一些最新和令人兴奋的发现,包括细菌感染背景下 miRNA 表达失调与感染进展之间的相关性。此外,它还描述了它们如何通过靶向 Toll、IMD 和 JNK 信号通路对宿主的免疫反应产生深远影响。它还强调了 miRNA 在调节昆虫免疫反应中的生物学功能。最后,它还讨论了目前关于 miRNA 在昆虫免疫中的作用的知识空白,以及未来需要更多研究的领域。
引言:阿尔茨海默病 (AD) 是一种进行性神经退行性疾病,全球至少有 2700 万人受其影响。这种疾病不仅严重影响患者及其家人的生活,还给社会带来沉重的经济负担。目前尚无明确的疾病改良疗法,各种疗法已被开发用于控制 AD 的症状。药物再利用是一种有价值的替代方法,可以发现已获批或正在研究的药物在其原有适应症之外的新用途。RNA 测序 (RNA-seq) 是发现疾病异质性基因表达的一种实用方法。因此,我们的研究应用了一种计算药物再利用流程,基于从 RNA-seq 数据中提取的 AD 差异基因表达特征来探索候选药物。方法与材料:从 GEO 数据库 (https://www.ncbi.nlm.nih.gov/geo/) 获取了 10 例对照和 8 例 AD 死后人类海马脑组织(登录号为 GSE173955)的表达谱。使用 GEO2R 识别 AD 与正常组织之间的差异表达基因 (DEG)。接下来,使用 LINCS 数据库识别 AD 疾病的潜在候选药物。然后,通过大量文献综述和药物研究,筛选出排名靠前的 FDA 批准药物。反过来,将 DEG 导入 STRING 数据库,以识别蛋白质之间的相互作用关联。之后,选择所有显著性综合评分为 0.7 的相互作用进行进一步分析。选择连接度最高的合适基因作为枢纽基因。靶标扫描数据库是一个专门收集 microRNA-mRNA 靶向关系的数据库。这些数据库用于获取枢纽基因相关的 miRNA。结果:本研究鉴定出 1,878 个 |log2FC| ≥ 1 且 p 值 ≤ 0.05 的基因为 DEG:909 个基因上调,969 个基因下调。能够逆转 AD 表达模式的显著改变的药物谱包括奥沙利德、莫米洛替尼和恩扎妥林。此外,S100A8 已被确定为 Cytoscape 中最突出的枢纽基因之一,在 AD 的背景下它可以被 miR-98-5p 抑制。结论和讨论:在本研究中,我们提出了几种潜在的可重新利用的候选药物,莫沙必利、莫米洛替尼和恩扎斯塔林,以及 miR-9-5p,用于治疗 AD 进展。莫沙必利目前用于治疗 2 型糖尿病、功能性消化不良、功能性便秘和上腹痛综合征。莫米洛替尼是一种 Janus 激酶 1 和 2 抑制剂,用于治疗骨髓纤维化。恩扎斯塔林已用于治疗复发性多形性胶质母细胞瘤。我们的研究结果可能指导针对不同疾病进展阶段的进一步重新利用研究。此外,我们报告 S100A8 充当炎症介质,其水平随着大脑年龄的增长而增加。MiR-98-5p 有可能抑制 AD 中的 S100A8 表达。
重组腺相关病毒 (rAAV) 平台有望用于体内基因治疗,但抗原呈递细胞 (APC) 的不良转导会削弱其应用前景,而抗原呈递细胞又会引发宿主对 rAAV 表达的转基因产物的免疫。鉴于最近接受高剂量全身 AAV 载体治疗的患者出现的不良事件,推测这些不良事件与宿主的免疫反应有关,开发抑制先天性和适应性免疫的策略势在必行。使用 miRNA 结合位点 (miR-BS) 来赋予内源性 miRNA 介导的调控,使转基因表达脱离 APC,有望降低转基因免疫力。研究表明,将 miR-142BSs 设计到 rAAV1 载体中能够抑制树突状细胞 (DC) 中的共刺激信号、减弱细胞毒性 T 细胞反应并减弱小鼠转导肌细胞的清除,从而允许在肌纤维中持续转基因表达,同时几乎不产生抗转基因 IgG。在本研究中,我们针对 26 种在 APC 中大量表达但在骨骼肌中不表达的 miRNA 筛选了单个和组合 miR-BS 设计。高免疫原性卵清蛋白 (OVA) 转基因被用作外来抗原的替代物。在成肌细胞、小鼠 DC 和巨噬细胞中进行的体外筛选表明,miR-142BS 和 miR-652-5pBS 的组合强烈抑制了 APC 中的转基因表达,但保持了成肌细胞和肌细胞的高表达。重要的是,携带这种新型 miR-142/652-5pBS 盒的 rAAV1 载体在小鼠肌肉注射后比以前的去靶向设计实现了更高的转基因水平。该盒强烈抑制细胞毒性 CTL 激活和
摘要:2024年诺贝尔生理学或医学奖(Nobel)因发现MicroRNA(miRNA)作为基因表达的基本调节剂而授予的奖励,它在包括自身免疫性状况(如Sjögren'sRepany(SD)等自身免疫性状况中,焦点了它们在疾病过程中的关键作用。SD是一种慢性自身免疫性疾病,其特征是外分泌腺的淋巴细胞浸润,导致明显的腺功能障碍和各种系统性作用。最近的研究表明,miRNA在SD发病机理,策划免疫细胞活性,上皮细胞完整性和调节炎症途径中起着至关重要的作用。与恶化的免疫反应,腺体损伤,上皮细胞功能障碍和持续炎症有关,将这些小的RNA分子定位为疾病进展中的核心参与者。本综述综合了有关miRNA在SD中作用的最新发现,强调了某些miRNA如何促进免疫失调,上皮功能障碍和疾病慢性。此外,我们还探讨了miRNA作为疾病活动的生物标志物的潜力,反映了免疫和上皮健康,并作为新的治疗靶标。通过巩固最近的进步,我们旨在提供有关miRNA参与SD的全面观点,并强调基于miRNA的策略来改变SD的诊断,管理和治疗。关键词:Sjögren病,microRNA,免疫失调,上皮完整性
抽象的急性缺血性中风(AIS)是一种严重的神经系统疾病,与Th17/ Treg细胞不平衡和Wnt/β-蛋白蛋白信号通路的失调有关。这项研究研究了miR-155抑制是否可以激活Wnt/β-catenin信号传导,改善Th17/ Treg平衡,并提供针对中风的神经治疗方法。我们进行了多级实验设计,包括高通量测序,生物信息学分析,体内小鼠模型和体外细胞实验。高吞吐量测序显示miR-155 Antagomir - 处理和对照组之间的显着差异基因表达(Bioproject:PRJNA1152758)。生物信息学分析确定了与Wnt/β -catenin信号传导和Th17/ Treg不平衡相关的关键基因。体外实验证实,miR -155抑制激活了Wnt/β -catenin信号传导并改善了Th17/ Treg比率。体内螺栓表明,miR-155 Antagomir治疗可针对AIS提供显着的神经保护作用。这些发现表明,靶向miR-155可能是通过调节免疫平衡和关键信号通路的有希望的中风的治疗策略。
Yu Zou,Siyan Shen,Andrii Karpus,Huxiao Sun,Regis Laurent等人。不对称的低生成阳离子阳离子磷酸聚合物作为非病毒载体,以提供用于乳腺癌治疗的微瘤。Biomacromolecules,2024,25(2),pp.1171-1179。10.1021/acs.biomac.3C01169。hal- 04502427
本世纪正在呈现全球气候变化,并在环境条件下发生了重大变化,这可能会影响几种生物体的生长,发育和生存。反过来,这种影响会影响地球上生物的食物,饲料和饲料的可用性。反复发生的环境压力,例如热,干旱,冷,昏昏欲睡等。可能会造成巨大的收益率损失,对农作物的挑战以及对可持续粮食安全的担忧。在压力条件下基因表达的调节是植物为应对环境应力而采用的分子策略之一。microRNA(miRNA)在通过翻译抑制或由于mRNA的裂解而在控制基因表达方面起重要作用。此外,miRNA正在成为调节发育过程(包括生产力/产量以及对植物压力的反应)的较新候选者。通常,miRNA的靶标是转录因子和与胁迫反应相关的基因,从而影响植物的适应性潜力。miRNA(miR160-arf,miR159-myb和miR169-nFya)的组合参与了调节植物干旱下基因表达的调节。这些干旱响应性的miRNA被证明具有影响生理,生化和分子反应的影响,并用作作物植物基因操纵的候选物,以增强胁迫弹性。本综述提供了对miRNA的见解,这是一种应力,在植物(尤其是大米中)对环境压力的弹性中起着重要作用。据报道,miRNA可以控制关键的生物学过程,例如呼吸,光合作用,信号通路,衰老等,尤其是在压力条件下。已经讨论了利用基于miRNA的策略进行改进的一些局限性以及未来的观点。这些可能有助于理解miRNA的功能,这是基因调节网络的重要组成部分之一,这将促进农作物的遗传改善,从而获得多种应力并产生潜力。
1索邦大学医院托管医院的妇产科和生殖医学系,法国75020,巴黎75020; yohann.dabi@gmail.com(y.d。); cyril.touboul@gmail.com(c.t.); Anne.puchar@aphp.fr(A.P。); emile.darai@aphp.fr(E.D。)2临床研究小组(RCM)巴黎6:子宫内膜异位专家中心(C3E),索邦大学(RCM6 C3E SU),75020巴黎,法国,法国3癌症生物学和治疗学,Saint-Antoine Research Center(CRSA),Sorbonne University,Sorbonne University,Sorbonne Universiti 69003法国里昂; stephane@ziwig.com 5巴黎脑部ICM脑部ICM,索邦大学,Inserm U1127,CNRS UMR 7225,AP-HP-HP-HPITAL PITII piti piti piti-salpê-Salpê分类,75013 Paris,法国,法国; ludmila.jornea@icm-institte.org 6 Gentoyping和测序核心设施,Igenseq,大脑研究所和Marrowépinipini,ICM,iCm,h。piti piti piti-salpê-sallp sort,47-83 Boulevard de l'h h华pital pital,75013 Paris,75013 Paris,75013 Paris,france,France; delphine.boutiller@icm-institut.org *通信:sofifane.bendifallah@aphp.fr;这样的。: +33-1-56-01-73-18
与编码基因类似,miRNA 由 RNA 聚合酶 II 从 miRNA/MIR 基因转录成长的初级转录本,称为初级/pri miRNA(图1)。此后,pri-miRNA 被 RNaseIII 样酶(称为 DICER-LIKE (DCL 1))与其他蛋白质一起切割成前体/前 miRNA。这些前 miRNA 进一步由 DCL1 加工成 20-24 个核苷酸长的 miRNA:miRNA 双链体。然后,双链体在 3' 端被 HUA 增强子 1 甲基化,并通过 EXPORTIN-5 输出到细胞质中。然后将双链体加载到含有 ARGONAUTE (AGO) 蛋白的 RNA 诱导沉默复合物 (RISC) 中。来自 miRNA:miRNA 双链中只有一条 RNA 链被加载到 RISC 上,而另一条链被小 RNA 降解核酸酶降解。最后,加载的 miRNA 将 RISC 靶向其互补的 mRNA,因此,根据其与目标 mRNA 的互补程度,它可能导致两种结果。如果 miRNA 与目标 mRNA 高度同源,则可能导致 mRNA 的位点特异性裂解,而与目标 mRNA 的弱碱基配对则导致翻译抑制(图1)。
Camille Houdelet、Eva Blondeau-Bidet、Mathilde Estevez-Villar、Xavier Mialhe、Sophie Hermet 等人。指示欧洲海鲈 (Dicentrarchus labrax) 性别和压力的循环微小 RNA:寻找新的生物标志物。海洋生物技术,2023 年,25 (5),第 749-762 页。�10.1007/s10126-023-10237-0�。�hal-04204152�