慢性职业暴露于焊接烟雾中的金属暴露与神经退行性疾病(NDDS)的病因有关,包括帕金森氏病(PD)和阿尔茨海默氏病(AD)。microRNA(miRNA)表达的变化与各种神经退行性条件有关。尤其是循环miRNA已成为有希望的,微创的生物标志物,用于诊断和监测疾病的进展。这项研究旨在表征miRNA在焊接和非焊机中富含神经元的血清外囊泡(EV)中的表达,以探索其与金属浓度和焊接暴露措施的潜在联系,并作为早期诊断生物标志物的神经变性物的潜在联系。收集了来自39个焊机和27个健康个体的血清样品,并提取并分析了EV封闭的miRNA。此外,还获得了全血金属浓度和焊接暴露测量。五十个miRNA在焊工与非焊工中的失调失调,其中三个(miR-16-5p,miR-93-5p,miR-93-5p,miR-486-5p)显示表达降低,两种(miR-4281和miR-4417)表现出与血液金属浓度以及长期和短期式销售量的正相关。这些miRNA的失调表明,接触金属可能会破坏重要的生物学过程,可能导致NDD的风险升高。这些发现强调了进一步研究的必要性,以验证焊接烟雾中的金属暴露,循环miRNA的失调及其在神经退行性疾病发展中的作用,这对基于miRNA的生物标志物在早期疾病检测和预防中的作用影响。
癌症是我们年龄的重要文明问题。科学家继续寻找负责致癌过程的新因素。在1993年,维克多·安布罗斯(Victor Ambros),罗莎琳(Rosalind Lee)和隆达·费恩鲍姆(Rhonda Feinbaum)发现,埃列哥秀丽隐杆线虫基因lin-4涉及控制这种非寄生虫线虫的幼虫发育,没有编码蛋白质,但没有编码蛋白质,而是一对短rna-about 22和大约61个基础。相关的RNA反过来是对3'UTR LIN-14基因结束时许多地方的反义互补的[1]。进一步的研究表明,LIN-4基因产物通过减少LIN14蛋白的量来调节LIN-14基因,同时保持LIN-14的mRNA浓度[2]。最后,有人认为这些短RNA对LIN-14的作用具有抑制作用,从而调节了从秀丽隐杆线虫的第一个幼虫阶段到第二阶段的转化开始[2]。RNA被认为是丰富的microRNA家族的第一个,主要是执行调节功能[2]。接下来的几年带来了新的microRNA分子。在许多生物体中,不仅在哺乳动物,昆虫,结节或植物中都观察到它们的存在[1]。绝大多数microRNA仍然在进化上保守[1,2]。单个microRNA通常也存在于特定细胞中,例如肝细胞中的miR-122 [1]。microRNA的基因以非常多样化的方式位于基因组中。它们是操纵子的一部分,发生在蛋白质编码序列的一部分之间[2]。它们发生在未翻译的外显子,内含子或序列中[2]。它们可能构成一个独立的转录单元[2]。作为内含子的一个组成部分,可以将它们与编码蛋白质的整个基因一起转录,从而导致microRNA和mRNA(PRE-mRNA)[1]。MicroRNA的基因由聚合酶II或III RNA转录[1,2]。microRNA的基因通常是在被转录为多孔子转录单元的簇中组织的[3]。它们可以在蛋白质编码序列和作为独立转录单元的功能之间发生,它们也可以位于编码序列中[4]。转录单元的这种布置可以导致miRNA和mRNA转录本的同时形成[5]。miRNA基因以某种方式组织
悬浮细胞:在制备复合物之前,板3-5 x10 5细胞在没有抗生素的0.8 mL无血清培养基中。2。对于每个转染样品,请在无菌微中心管中准备络合物,如下所示:解决方案A:对于6孔板,在125μl无血清的无血清,无抗生素的培养基中,稀释的合成miRNA,每个孔的浓度为42-840 nm。有关其他菜格式,请参阅表1。每个孔中的最终miRNA浓度通常为5–100 nm。
乳腺癌是一种高度复杂,多样的疾病,根据雌激素受体(ER),孕酮受体(PR)和人表皮生长因子受体2(HER2)的表达,被分类为几种亚型。这种分类至关重要,因为它决定了该疾病的最佳治疗策略。缺乏三个受体表达的乳腺癌的一种亚型称为三阴性乳腺癌(TNBC)。因此,TNBC患者不会受益于针对ER或HER2的疗法,并且通常需要全身治疗。TNBC约占所有已诊断出的乳腺癌的15-20%,每年约有5%的癌症死亡。TNBC的亚组表达雄激素受体(AR),这被认为是潜在的治疗靶标。已发表的报告表明,AR信号通路有助于该乳腺癌亚型的生长和发展。此外,据报道,AR阳性TNBC对新辅助化学疗法的病理完全反应率明显降低,并且更具有化学疗法。AR的靶标包括多药耐药性转运蛋白,例如抗乳腺癌蛋白(BCRP/ABCG2),这是抗化疗的主要原因。有趣的是,ABCG2基因也已被证明是由特定的microRNA分子(miRNA)靶向的,这些分子也受到AR的转录调节。在此,提出了AR,ABCG2和miRNA在调节乳腺癌化学回应性中的作用,并提出了一种提议,以利用这些知识来设计一种新型的TNBC治疗策略。
1 汉诺威医学院分子与转化治疗策略研究所 (IMTTS),30625 汉诺威,德国;Stojanovic.Stevan@mh-hannover.de (SDS);Fiedler.Jan@mh-hannover.de (JF);Xiao.Ke@mh-hannover.de (KX);Meinecke.Anna@mh-hannover.de (AM);Just.Annette@mh-hannover.de (AJ) 2 埃尔朗根-纽伦堡弗里德里希-亚历山大大学医学信息学系,91058 埃尔朗根,德国; maximilian.fuchs@fau.de 3 维尔茨堡大学生物信息学系功能基因组学和系统生物学组,维尔茨堡 97074,德国 4 汉诺威医学院毒理学和核心单位蛋白质组学研究所,30625 汉诺威,德国;Pich.Andreas@mh-hannover.de 5 汉诺威医学院 REBIRTH 转化再生医学中心,30625 汉诺威,德国 * 通讯地址:meik.kunz@fau.de (MK);Thum.Thomas@mh-hannover.de (TT);电话:+ 49-9131-85-26767 (MK);+ 49-511-532-9174 (TT);传真:+ 49-9131-85-26754 (MK); + 49-511-532-5274 (TT) † 这些作者对这项工作做出了同等贡献。
摘要:2型糖尿病(T2D)是一种慢性代谢疾病,其特征是胰岛素抵抗和β细胞功能障碍,导致许多微血管并发症。在这项研究中,我们分析了使用下一代测序的44例T2D患者和22个健康个体的血浆样品中的循环miRNA表达纤维,并检测到229个差异表达的miRNA。在T2D患者中,miR-5588-5p,miR-125b-2-3p,miR-1284和miR-496降低的水平升高。我们还比较了同一组患者中的表达景观,具体取决于体重指数和鉴定的miR-144-3p和miR-99a-5p在肥胖个体中的差异表达。对miR-5588-5p,miR-125b-2-3p,miR-1284和miR-496进行了推定靶基因的识别和功能分析,显示染色质质量修饰酶和凋亡基因是在非常富集的途径之一。
Josie Fullerton在格拉斯哥大学获得了神经科学和生物医学科学MRE的理学学士学位。然后,她在Strathclyde大学完成了博士学位。凯特琳·科斯格罗夫(Caitlin Cosgrove)毕业于格拉斯哥大学(University of Glasgow),并获得了人类生物学的理学学士学位(荣誉)。她现在正处于英国心脏基金会(BHF)资助的博士学位计划的MRES轮换年中,她希望在此期间进行与细胞外囊泡(EV)衍生的缺血性中风中的MicroRNA有关的进一步研究。丽贝卡·鲁尼(Rebecca Rooney)是由BHF资助的格拉斯哥大学心血管科学的最后一年博士学位候选人,他调查了缺血性中风后电动汽车的作用。Lorraine的工作在英国格拉斯哥大学的心血管和医学科学研究所拥有一支研究团队。他们正在确定在缺血性中风的情况下利用装有治疗货物的电动汽车的潜力。她从Strathclyde大学获得了心血管药理学博士学位,并且已经是PI 15年了。
1 广东省分子靶点与临床药理重点实验室,广州医科大学药学院和第五附属医院,广州,中国,2 海南医学院热带转化医学教育部重点实验室,海口,中国,3 广州医科大学广州市儿科研究所/广州市妇女儿童医疗中心,广州,中国,4 香港浸会大学中医学院,香港,中国,5 山西大同大学医学院呼吸与职业病研究所肿瘤协同创新中心,大同,中国,6 特里布万大学应用科学与技术研究中心,尼泊尔基尔蒂布尔,7 海南医学院热带医学与检验学院教育部急救与创伤重点实验室,海口,中国
全世界有4.22亿成年人患有糖尿病,在所有少年死亡中,有48%是由于糖尿病或糖尿病疾病引起的;低收入家庭的糖尿病迅速增长 - 全球高达21%。通过结合MicroRNA(MIR)技术的最新进展并将基于MiR的LNP载荷和MicroNeedle透明质链链连接药物输入方法应用于DIAMIR(Dia Betes M Icrorna I n jected r Eparation)旨在通过激活T2D-D2D-启用T2D-2D-DAIGATES(T2D)的不良效应,以减轻2型糖尿病(T2D)的不良效应。这项研究提供了概念证明,即体内和体内数据,以开发具有成本效益且易于访问的microRNA(MIR) - 负载可穿戴的MicroNeedle贴片来控制T2D。扫描电子显微镜(SEM)和荧光成像揭示了miR-23载荷后微针贴片的形式。进行了体外测试,以研究肝脏(HEPG2),脂肪(3T3- L1)和骨骼肌(L6)细胞系上Akt胰岛素途径,PTEN表达和葡萄糖输出/摄取的miR-23作用。体内测试(动物研究)是在T2D小鼠上进行的; IVI(体内成像系统)用于确定降解曲线。 结果表明,miR-23降低了HEPG2肝细胞中的葡萄糖输出[对照与miR-23b(p <0.0001;高显着)],但在L6骨骼肌细胞中葡萄糖的摄取增加[对照与miR-23b(P <0.0001)]和3T3-L1脂肪细胞[对照Mir-23b(P <0.0001)]。 如在Diamir血糖小鼠实验(n = 10)和HBA1C%测量值中,Diamir微针斑块能够显着降低T2D小鼠的血糖水平3-4天。体内测试(动物研究)是在T2D小鼠上进行的; IVI(体内成像系统)用于确定降解曲线。结果表明,miR-23降低了HEPG2肝细胞中的葡萄糖输出[对照与miR-23b(p <0.0001;高显着)],但在L6骨骼肌细胞中葡萄糖的摄取增加[对照与miR-23b(P <0.0001)]和3T3-L1脂肪细胞[对照Mir-23b(P <0.0001)]。如在Diamir血糖小鼠实验(n = 10)和HBA1C%测量值中,Diamir微针斑块能够显着降低T2D小鼠的血糖水平3-4天。此外,Diamir在处理的小鼠中没有毒性,并且不会诱发炎症。在生物工程,生物材料和持续药物递送中使用技术,我们的研究提供了一种创新的解决方案来控制T2D。
©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。