抽象蔬菜是植物的可食用部分。蔬菜微生物变质的发生被认为是对人和动物的潜在健康危害的根源。该研究的重点是隔离微生物,尤其是细菌和真菌与销售蔬菜。样品,并使用标准的微生物学分析来分离细菌和真菌。分离出的八个细菌分离株是Brevibacillus brevi,枯草芽孢杆菌,branmehamlla cattarhalis,Escherichia coli,Salmonella Typhi,Pseudomonas atruginosa,Serrratia Marcscen和Chaphyloccus sp。也分离出四个真菌分离株;曲霉曲霉,尼日尔曲霉,青霉人SP,糖疗法sp。胡椒(Capsicum Annuum)的细菌计数最高(6.53×10 9 CFU/mL),而Shoko(Argentia celosia Argentia)的真菌计数最高(5.45×10 9 CFU/mL)。在这项研究中,这些蔬菜的真菌和细菌污染的高流行率在耕种,收获,运输或销售时描绘了对这些食物材料的卫生处理。因此,需要通过适当清洗和消毒这些产品来保护最终消费者的健康,这些产品以其原始形式消费。键盘:细菌分离株,微生物负荷,蔬菜。简介蔬菜一词在15世纪初首次用英语记录。它来自旧法国,最初用于所有植物。在生物学环境中,这个词仍然在这种意义上使用。它源自中世纪的拉丁植物,意为“成长”,“繁荣”(沃顿,1970年)。蔬菜是植物的可食用成分。这通常意味着植物的叶子,茎,灯泡,种子和根。但是,蔬菜一词不是科学的,其含义主要基于烹饪和文化传统(ICMSF,1986; Bankefa,2013; Akinyele等al。,2013年)。蔬菜是食物的重要保护成分,对维持健康和预防疾病非常有益。它们含有不同比例的维生素,例如维生素A,K,B6,Provitamin,饮食
科学,瑞安学院的申请邀请了合格的合格候选人,从2024年9月开始,从2024年9月开始,隶属于科学与工程学院,生物学与化学科学学院,瑞安大学瑞安学院。与盖尔韦大学的Alexandre de Menezes博士(分子微生物生态学和土壤微生物学)组合获得了一项完整的4年博士学位奖学金。作为该项目的一部分,将分析影响土壤一氧化二氮排放的微生物过程。该项目将包括分子生态技术,DNA和RNA测序,分析化学(气相色谱和质谱法)和机器学习方法。项目描述。农业土壤是温室气体(GHG)排放的重要来源。要控制农业温室气体排放,必须了解产生它们的生物学过程。该项目将研究一个被忽视的过程,该过程会影响土壤微生物氮循环,这是有效的温室气体氧化二氮的主要来源之一。我们的长期视野是利用土壤的自然硝化抑制过程,以减轻土壤一氧化二氮,并支持低排放,可持续农业。博士生将与博士后研究员和研究助理紧密合作。生活津贴(津贴):€22,000欧元每年的大学费:学费将支付4年。成功的候选人将进行土壤缩影实验,并使用分子生物学,微生物组测序,射击枪宏基因组学和元文字组学来表征土壤气体与土壤碳和氮气循环之间的关系。开始日期:2024年9月至2024年10月(可以协商)。学术入学要求:生物学,微生物学,生物化学,环境科学,生态学或相关领域的BSC和/或MSC。候选人必须具有良好的学术英语写作和口语能力。对宏基因组学,生物信息学,机器学习和环境可持续性的强烈兴趣将是一个优势。申请奖学金:请发送您的简历,一份利益声明,包括先前的研究经验的摘要(最多1页),成绩单的副本和至少两名裁判的联系方式到Alexandre.demenezes@universityofgalway.ie。联系人名称:Alexandre de Menezes博士。联系电子邮件:Alexandre.demenezes@universityofgalway.ie。应用程序截止日期:12/07/2024 at 23:59
[19] Kunin,V.,Copeland,A.,Lapidus,A.,Mavromatis,K。,&Hugenholtz,P。(2008)。宏基因组学的生物信息学指南。微生物学和分子生物学评论,72(4),557-578。[20] Jolley,K。A.,Chan,M。S.,&Maiden,M.C。(2004)。MLSTDBNET分布的多洛克斯序列键入(MLST)数据库。BMC生物信息学,5(1),86。[21] Enright,M。C.和Spratt,B。G.(1999)。多焦点序列键入。微生物学的趋势,7(12),482-487。[22] Healy,M.,Huong,J.,Bittner,T.,Lising,M.,Frye,S.,Raza,S。,&Woods,C。(2005)。通过自动重复序列的PCR键入微生物DNA。临床微生物学杂志,第43(1)期,199-207。[23] Vergnaud,G。和Pourcel,C。(2006)。多个基因座VNTR(串联重复的可变数量)分析。分子鉴定,系统学和原核生物的种群结构,83-104。[24] Van Belkum,A。(2007)。通过多焦点数量的串联重复分析(MLVA)来追踪细菌物种的分离株。病原体和疾病,49(1),22-27。[25] Vergnaud,G。和Pourcel,C。(2009)。多个基因座变量串联重复分析数。微生物的分子流行病学:方法和方案,141-158。[26] Fricke,W。F.,Rasko,D。A.和Ravel,J。(2009)。基因组学在鉴定,预测和预防生物学威胁中的作用。PLOS Biology,7(10),E1000217。[27] Wu,M。和Eisen,J。A.(2008)。95-100)。一种简单,快速且准确的系统基因推断方法。基因组生物学,9(10),R151。[28] Liu,B.,Gibbons,T.,Ghodsi,M。和Pop,M。(2010年12月)。隐式:元基因组序列的分类分析。生物信息学和生物医学(BIBM),2010年IEEE国际会议(pp。IEEE。 [29] Wang,Z。,&Wu,M。(2013)。 门水平细菌系统发育标记数据库。 分子生物学与进化,30(6),1258-1262。 [30] Darling,A。E.,Jospin,G.,Lowe,E.,Matsen IV,F。A.,Bik,H。M.,&Eisen,J. A. (2014)。 系统缩影:基因组和宏基因组的系统发育分析。 peerj,2,e243。 [31] Taberlet,P.,Prud'Homme,S.M.,Campione,E.,Roy,J.,Miquel,C.,Shehzad,W。,&Melodelima,C。(2012)。 土壤采样和细胞外DNA的分离,适用于大量的起始材料。 分子生态学,21(8),1816-1820。IEEE。[29] Wang,Z。,&Wu,M。(2013)。门水平细菌系统发育标记数据库。分子生物学与进化,30(6),1258-1262。[30] Darling,A。E.,Jospin,G.,Lowe,E.,Matsen IV,F。A.,Bik,H。M.,&Eisen,J.A.(2014)。系统缩影:基因组和宏基因组的系统发育分析。peerj,2,e243。[31] Taberlet,P.,Prud'Homme,S.M.,Campione,E.,Roy,J.,Miquel,C.,Shehzad,W。,&Melodelima,C。(2012)。土壤采样和细胞外DNA的分离,适用于大量的起始材料。分子生态学,21(8),1816-1820。
这项工作属于版权。所有权利都是由出版商唯一的,全部由材料的全部或部分授权的,特别是涉及翻译,重新使用,重新使用,插图,朗诵,广播,对微观或以任何其他物理方式或任何其他物理方式,以及传输或信息的存储和电子设置,计算机或计算机或相似的方法,或者以任何其他物理方式的复制,或者使用。使用一般描述性名称,注册名称,商标,服务标记等。在本出版物中,即使在没有特定陈述的情况下,这种名称也不受相关的保护法律和法规的限制,因此也没有暗示,因此可以免费使用。出版商,作者和编辑可以肯定地假设本书中的建议和信息在出版之日被认为是真实而准确的。就本文包含的材料或可能已犯的任何错误或遗漏而言,出版商,作者或编辑都没有提供任何明示或暗示的保修。出版商在已发表的地图和机构之后的管辖权索赔方面保持中立。
重金属污染由于其持续性,更高的毒性和顽固性而成为全球严重关注的问题。这些有毒的金属威胁着环境的稳定性和所有生物的健康。重金属还通过食用受污染的食物并对人类健康造成有毒作用,进入人类食物链。因此,必须对HMS污染的土壤进行修复,并且需要在更高的优先级上解决。使用微生物被认为是打击HMS不利影响的有前途的方法。微生物有助于恢复恶化环境的自然状况,并具有长期的环境影响。微生物修复可防止HMS的浸出和动员,并且还使HMS的提取变得简单。因此,在这种情况下,最近的技术进步允许将生物修复用作补救污染土壤的必要方法。微生物使用不同的机制,包括生物呼吸,生物蓄积,生物含量,生物转化,生物胆碱化和生物矿化,以减轻HMS的影响。因此,在此评论中,在此综述中保持有毒的HMS探讨细菌,真菌和藻类在污染土壤的生物修复中的作用。本综述还讨论了可用于提高微生物效率以补救HMS污染土壤的各种方法。它还强调了在未来的研究计划中必须解决的不同研究差距,以改善生物修复效率。
Motu Profiler或Short Motus是一种软件工具,可以从分类学组成,代谢活性成员的丰富性以及菌株群体的多样性方面对微生物群落的生产。为此,它维护了单拷贝系统发育标记基因序列的数据库,该数据库被用作参考,简短读取的元基因组和元文字读数被映射为识别和定量微生物分类群。在这里,我们描述了两个基本协议中最常见的MOTU剖面用例。其他支持协议提供有关其安装和深入指南的信息,以调整其设置,以增加或降低检测和量化分类单元的严格度,以及用于自定义输出文件格式。提供了解释分析结果的指南,以及有关独特功能,方法学细节和工具的开发历史的其他信息。©2021作者。Wiley Perigonicals LLC发布的当前协议。
安全的饮用水和足够的环境卫生是健康的前提,并取得了抵抗贫困,饥饿和儿童死亡的成功(1)。根据联合国儿童基金会的一份报告,亚洲和非洲约有8亿人生活在没有安全饮用水的情况下生活(2)。估计有近15亿人缺乏安全的饮用水,每年至少有500万人死亡可以归因于水传播疾病。被污染的水或安全饮用水的供应不足会导致各种胃肠道疾病,例如腹泻,痢疾和水传播疾病,例如霍乱和伤寒(3)。水质,卫生和卫生差,全球约有170万人死亡(占所有死亡人数的3.1%,占Daly的3.7%),主要是通过感染性腹泻(4)。世界卫生组织(WHO)告知,每年有340万人因与水有关的疾病而死亡,这使其成为世界各地疾病和死亡的主要原因(5)。还估计,世界上多达80%的疾病和疾病是由卫生,污染水或不可用的水引起的。与饮用水污染有关的疾病构成了人类健康的重大负担。与饮用水相关的最常见和广泛的健康风险是微生物污染。世界上所有疾病和疾病的80%是由卫生,污染的水或水不足引起的(6)。一般而言,最大的
摘要 在现代农业系统中,农药使用是农田中最常见的做法,其中 2%–3% 的农药被使用,其余的残留在土壤和水中,造成环境污染并产生毒性 (WHO,1990。饮食、营养和慢性疾病预防,797 页)。农药残留物留在土壤表层,导致土壤-水环境毒性。绝大多数印度人口 (56.7%) 从事农业,因此接触到农业中使用的农药。此外,农药的微生物降解对现代农业及其环境影响至关重要。微生物几乎占据了地球上的每个栖息地,它们的活动在很大程度上决定了当今世界的环境条件。事实上,它们深度参与生物地球化学、金属沉淀、水净化和植物生长的维持,确保碳和氮等元素的循环利用。在土壤中,微生物与植物根部相互作用,根部是微生物活动的“热点”,微生物数量、微生物相互作用和基因交换增加。在植物根部,一个环绕植物根部并受植物根部影响的狭窄土壤区域称为根际,是大量微生物和无脊椎动物的家园,被认为是地球上最具活力的界面之一。根际微生物组取决于植物基因型、根系分泌物和环境。因此,研究受农药污染和未受农药污染的根际微生物群落表达情况,对于探究微生物在各自生态位中发挥的不同作用以及确定微生物遗传潜力在农药生物修复中的生物技术应用至关重要,包括但不限于:制药、诊断、废物处理和可再生能源发电。
我们描述了一种分析复杂微生物种群遗传多样性的新型分子方法。该技术基于通过变性梯度凝胶电泳 (DGGE) 分离编码 16S rRNA 的聚合酶链式反应扩增基因片段,这些片段的长度相同。对不同微生物群落的 DGGE 分析表明,分离模式中存在多达 10 个可区分的条带,这些条带很可能来自构成这些种群的许多不同物种,从而生成了种群的 DGGE 图谱。我们表明,可以识别仅占总种群 1% 的成分。使用针对硫酸盐还原菌 16S rRNA 的 V3 区特异性的寡核苷酸探针,可以通过杂交分析识别某些微生物种群的特定 DNA 片段。对在有氧条件下生长的细菌生物膜的基因组 DNA 进行分析表明,尽管硫酸盐还原菌具有厌氧性,但它们仍存在于这种环境中。我们获得的结果表明,该技术将有助于我们了解未知微生物种群的遗传多样性。
“微生物感染和宿主免疫”上的特刊旨在阐明微生物病原体与宿主免疫系统之间的复杂相互作用。本期特刊旨在探索了解微生物感染背后的机制和相应宿主免疫反应的最新进步。我们欢迎原始的研究文章,评论和观点研究各种微生物感染的发病机理,新型治疗策略的发展以及宿主免疫系统在对抗这些感染中的作用。我们鼓励提交,以解决微生物和免疫学方面的基本问题,以及提供与人类健康相关的临床见解的提交问题。通过培养跨学科对话,这一特殊问题努力为微生物感染和宿主免疫的知识不断增长做出贡献。提交将为学术界提供宝贵的贡献,并促进我们对这些相互关联的领域的理解。