[1] Du M,Peng X,Zhang H等。地质,环境和生活在世界海洋最深的地方。创新(Camb),2021,2:100109 [2] Stewart HA,Jamieson AJ。HADAL沟渠的栖息地异质性:未来研究的考虑和影响。Prog Oceanogr,2018,161:47-65 [3] Jamieson AJ,Fujii T,市长DJ等。Hadal Trenches:地球上最深的地方的生态。趋势Ecol Evol,2010,25:190-7 [4] Jamieson A.Hadal区域:最深的海洋中的生命[M]。剑桥:剑桥大学出版社,2015年[5] Glud RN,WenzhöferF,Middelboe M等。地球上最深的海洋沟中的沉积物中的微生物碳更换率很高。nat Geosci,2013,6:284-8 [6] Glud RN,Berg P,Thamdrup B等。HADAL沟渠是深海早期成岩作用的动态热点。社区地球环境,2021,2:21 [7]WenzhöferF,Oguri K,Middelboe M等。底栖碳矿化中的矿物质矿化:原位评估2微量精细的测量值。深海Res 1 Oceanog Res Pap,2016,116:276-86 [8] Nunoura T,Nishizawa M,Kikuchi T等。分子生物学和同位素生物地球化学预后,硝化驱动的动态微生物氮循环在hospelagic沉积物中。环境微生物,2013,15:3087-107 [9] Nunoura T,Takaki Y,Hirai M等。HADAL生物圈:对地球上最深海洋中微生物生态系统的洞察力。 Proc Natl Acad Sci u S A,2015,112:E1230-6 [10] Thamdrup B,Schauberger C,Larsen M等。HADAL生物圈:对地球上最深海洋中微生物生态系统的洞察力。Proc Natl Acad Sci u S A,2015,112:E1230-6 [10] Thamdrup B,Schauberger C,Larsen M等。Anammox细菌驱动Hadal沟槽中的固定氮损失。Proc Natl Acad Sci u S A,2021,118:E2104529118 [11] Liu S,Peng X. Hadal环境中的有机物成分:来自Mariana Trench Sediments的孔隙水地球化学的见解。深海Res 1 Oceanogr Res Pap,2019,147:22-31 [12] Cui G,Li J,Gao Z等。在挑战者深处的深渊和哈达尔沉积物中微生物群落的空间变化。peerj,2019,7:e6961 [13] Peoples LM,Grammatopoulou E,Pombrol M等。从两个地理分离的哈达尔沟中的沉积物中的微生物群落多样性。前微生物,2019,10:347 [14] Li Y,Cao W,Wang Y等。在玛丽安娜南部沟渠沉积物中的微生物多样性。J Oceanol Limnol,2019,37:1024-9 [15] Nunoura T,Nishizawa M,Hirai M等。从挑战者深处的沉积物中的微生物多样性,玛丽安娜沟。Microbes Environ,2018,33:186-94 [16] Jian H,Yi Y,Wang J等。居住在地球上最深海洋的病毒的多样性和分布。ISME J,2021,15:3094-110 [17] Hiraoka S,Hirai M,Matsui Y等。 微生物群落和对的反式沉积物的地球化学分析ISME J,2021,15:3094-110 [17] Hiraoka S,Hirai M,Matsui Y等。微生物群落和对
摘要Popo是一种传统的泡沫饮料,由发酵米,烤可可豆,肉桂和绿色chupipe水果制成。尽管在墨西哥东南部的广泛消费量,但尚无研究提供有关其面团发酵的信息,将其所有成分结合在一起,以将其归类为发酵产品。因此,这项研究的目的是评估发酵时间对POPO物理化学和微生物学特征的影响。在实验室水平(T1)制备的Popo面团的发酵过程在25±2°C进行120小时进行。该研究显示,初始酵母计数为4.35±0.01 log cfu/g,随着时间的推移显着下降。相比之下,BAL在发酵的前48小时内显示出增加,达到9.54±0.04 log cfu/g。发酵抑制了大肠菌微生物的生长,最初存在于2.10±0.05 log cfu/g,从而使波波面团成为安全食用的安全选择。在结束发酵过程后,观察到显着变化,包括pH下降到3.9±0.02,可滴定酸度增加到1.23±0.03%,水分含量为39.67±0.08%。因此,建议将Popo面团的发酵周期至少48小时,以提高其微生物学质量。关键词:乳酸细菌,发酵饮料,微生物群落,popo恢复Ela popo es una bebida espumosa eSpumosa tockumosa tradicional Elaborada con Arroz fermentado,Granos de cacao de cacao tostados,canela y frutososverdes de chupipe。对比,las bal mostraron un aumento en las primeras 48 h defermentación,alcanzando un valor de 9.54±0.04 log ufc/g。尽管它在墨西哥东南部被广泛消费,但没有研究提供有关其质量发酵的信息,将其所有组件整合在一起以将其识别为发酵产品。 div>因此,这项工作的目的是评估发酵时间对POPO物理化学和微生物特征的影响。 div>在25±2°C下进行120小时,在实验室水平(T1)阐述的POPO质量的发酵过程进行了120小时。该研究显示,初始酵母计数为4.35±0.01 log UFC/g,随着时间的推移显着下降。 div>发酵抑制了大肠菌微生物的生长,最初以2.10±0.05 log ufc/g存在,这使波波的质量成为消费的安全选择。 div>在发酵过程的结论结束时,观察到显着变化,包括pH降至3.9±0.02,标题酸度的增加为1.23±0.03%,水分含量为39.67±0.08%。 div>因此,建议将Popo的质量提交至少48小时的发酵,以提高其微生物学质量。 div>关键词:乳酸细菌,发酵饮料,微生物社区,便便
1. Ren J、Lee J、Na D. 基于合成生物学的基因工程工具的最新进展。J Microbiol. 2020;58:1-0。2. Lee HM、Vo PN、Na D. 合成生物学辅助代谢工程的进展。Catalysts. 2018;8(12):619。3. McCarty NS、Ledesma-Amaro R. 用于生物技术工程微生物群落的合成生物学工具。Trends Biotechnol. 2019;37(2):181-197。4. Breitling R、Takano E. 合成生物学在药物生产中的进展。Curr Opin Biotechnol. 2015;35:46-51。5. Nikel PI、Martínez-García E、de Lorenzo V. 利用合成生物学进行假单胞菌的生物技术驯化。Nat Rev Microbiol. 2014;12(5):368-379。6. Li J, Zhao H, Zheng L, An W. 合成生物学和生物安全治理进展。Front Bioeng Biotechnol. 2021;9:598087。7. Patra P, Das M, Kundu P, Ghosh A. 用于在非传统酵母中开发新型细胞工厂的系统和合成生物学方法的最新进展。Biotechnol Adv. 2021;47:107695。8. Chi H, Wang X, Shao Y, Qin Y, Deng Z, Wang L 等。用于系统和合成生物学的微生物底盘的工程设计和改造。Synth Syst Biotechnol. 2019;4(1):25-33。 9. Ruiz Amores G、Guazzaroni ME、Magalhães Arruda L、Silva-Rocha R. 系统和合成生物学方法在将真菌改造为微生物细胞工厂方面的最新进展。Curr Genomics。2016;17(2):85-98。10. Vavitsas K、Glekas PD、Hatzinikolaou DG. 嗜热菌的合成生物学:将生物工程推向极致?Appl Microbiol。2022;2(1):165-174。
4. Dunkel IJ、Gardner SL、Garvin JH、Goldman S、Shi W、Finlay JL。高剂量卡铂、噻替派和依托泊苷联合自体干细胞抢救治疗既往接受过放射治疗的复发性髓母细胞瘤患者。神经肿瘤学。2010;12(3):297-303。https://doi.org/10.1093/neuonc/nop031 5. Shih CS、Hale GA、Gronewold L 等人。高剂量化疗联合自体干细胞抢救治疗复发性恶性脑肿瘤儿童。癌症。2008;112(6):1345-1353。https://doi.org/10.1002/cncr.23305 6. Koskenvuo M、Rahiala J、Sadeghi M 等人。同种异体造血干细胞移植儿童的病毒血症合并感染以人类多瘤病毒为主。感染性疾病(伦敦)。2017;49(1):35-41。https://doi.org/10.1080/23744235.2016.1210821 7. Soudani N、Caniza MA、Assaf-Casals A 等人。小儿癌症患者急性呼吸道病毒感染的患病率和特点。医学病毒学杂志。2019;91(7):1191-1201。https://doi.org/10.1002/jmv.25432 8. Ye X、Van JN、Munoz FM 等人。诺如病毒是导致免疫功能低下儿童造血干细胞和实体器官移植接受者腹泻的原因。Am J Transplant 。2015;15(7):1874-1881。https://doi.org/10.1111/ajt.13227 9. Bordon V、Bravo S、Van Renterghem L 等人。儿童同种异体干细胞移植中巨细胞病毒 (CMV) DNA 血症的监测:CMV 感染和疾病的发病率和结果。Transpl Infect Dis 。2008;10(1):19-23。https://doi.org/10.1111/j.1399-3062.2007.00242.x 10. Millen GC、Arnold R、Cazier JB 等人。癌症儿童中 COVID-19 的严重程度:英国儿科冠状病毒癌症监测项目的报告。Br J Cancer。2021;124(4):754-759。https://doi.org/10.1038/s41416-020-01181-0 11. Dong Y, Mo X, Hu Y 等人。中国儿童 COVID-19 流行病学。儿科。2020;145(6):e20200702。https://doi.org/10.1542/peds.2020-0702 12. Mukkada S、Bhakta N、Chantada GL 等人。癌症儿童和青少年(GRCCC)中 SARS-CoV-2 感染的全球特征和结果:一项队列研究。Lancet Oncol。 2021;22(10):1416- 1426。https://doi.org/10.1016/S1470-2045(21)00454-X 13. Peyrl A、Chocholous M、Kieran MW 等人。抗血管生成节拍疗法治疗复发性胚胎性脑肿瘤儿童。儿童血癌。2012;59(3):511-517。https://doi.org/10.1002/pbc。24006 14. Ward CL、Dempsey MH、Ring CJA 等人。用于测量甲型和乙型流感病毒载量的定量实时 PCR 检测的设计和性能测试。临床病毒学杂志。2004;29(3):179-188。 https://doi.org/ 10.1016/S1386-6532(03)00122-7 15. Heim A、Ebnet C、Harste G、Pring-Akerblom P。通过实时 PCR 快速定量检测人类腺病毒 DNA。J Med Virol。2003;70(2):228-239。https://doi.org/10.1002/jmv.10382 16. Fry AM、Chittaganpitch M、Baggett HC 等人。泰国农村地区因呼吸道合胞病毒导致的住院下呼吸道感染负担。PLoS One。2010;5(11):e15098。https://doi.org/ 10.1371/journal.pone.0015098 17. Lu X、Holloway B、Dare RK 等人。实时逆转录 PCR 检测用于全面检测人类鼻病毒。临床微生物学杂志。2008;46(2):533-539。https://doi.org/10.1128/JCM.01739-07 18. Maertzdorf J、Wang CK、Brown JB 等人。实时逆转录 PCR 检测用于检测所有已知遗传谱系的人类亚肺病毒。临床微生物学杂志。2004;42(3):981-986。 https://doi.org/10.1128/JCM.42.3.981-986.2004 19. Corman VM、Landt O、Kaiser M 等。通过实时 RT-PCR 检测 2019 年新型冠状病毒 (2019-nCoV)。欧洲监测。2020;25(3):2000045。https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045 20. Watkins-Riedel T、Woegerbauer M、Hollemann D、Hufnagl P. 通过实时 PCR 快速诊断肠道病毒感染
目标:关于SARS-COV-2 Omicron变体对接种疫苗和未接种疫苗的孕妇的影响的证据很少。根据疫苗保护,这项研究旨在比较意大利的Omicron波浪中感染SARS-COV-2的妇女的孕产妇和围产期结局。方法:这项国家前瞻性队列研究在2022年1月1日至5月31日住院后7天内招募了SARS-COV-2鼻咽为正的孕妇。怀孕期间至少接受了一剂疫苗的妇女,以及第一次助推器完成疫苗周期的妇女被认为是免受中度或重度COVID-19(MSCD)的保护。多变量逻辑回归模型评估了疫苗保护与疾病严重程度之间的关联。产妇年龄,教育水平,公民身份,出生领域,以前的合并症和肥胖症被分析为潜在的危险因素。结果:MSCD很少见(41/2147,1.9%; 95%CI,1.4 E 2.6),并且未经保护的妇女的开发几率明显更高(OR,2.78; 95%CI,1.39 E 5.57)。与受保护的妇女(n¼1069)相比,未受保护的(n¼1078)更年轻,教育程度较低和外国人。在先前合并症(OR,2.86; 95%CI,1.34 E 6.12)和出生在亚洲国家(OR,3.05; 95%CI,1.23 E 7.56)的女性中发现了MSCD的较高概率。与温和病例相比,MSCD女性的早产百分比更高(32.0%[8/25],而8.4%[161/1917],p <0.001)以及剖宫产的百分比(52.0%[13/25] ves 31.6%[606/1919],p 0.0029)。讨论:尽管严重的母亲和围产期结局很少见,但其患病率显着 - 没有疫苗保护的妇女较高。怀孕期间的疫苗接种有可能保护母亲和婴儿,因此强烈建议使用。Edoardo Corsi Exenti,Clin Microbiol Infect 2023; 29:772©2023欧洲临床微生物学和传染病学会。由Elsevier Ltd.发布的所有权利保留。
Buffy Coat Gram染色用于检测败血症的Richmond C. Reyes患者的菌血症,M.D。*Emmanuel Edwin R. Dy,M.D。传统上,这取决于收集后24-72小时的血液培养物的恢复。gram涂片的污渍来促进菌血症的检测,因此,协助医生选择抗菌治疗。进行了这项研究,以确定败血症患者早期检测到Buffy Coat Gram污渍的敏感性和特异性。Buffy Coat Coat涂片由23例具有临床体征和败血症症状的成年患者制备,至少没有事先抗生素摄入量至少24小时,并接受了圣托马斯大学医院临床部门的传染病部分,以了解微生物的存在。同时,从两个不同的地点获得了血液培养物,并每天检查是否生长。23例患者中有四名具有阳性血液培养。观察到七个Buffy Coat涂片对微生物呈阳性。两名患有革兰氏阳性球菌的患者和两名在Buffy Coat涂片上的革兰氏阴性杆菌患者对其血液培养没有生长。; 3。呼吸率> 20呼吸/分钟。两名在血液培养上生长沙门氏菌生长的患者在两个单独的样品的Buffy Coat涂片上具有革兰氏阴性杆菌,一名患有大肠杆菌生长的受试者在Buffy Coat上具有革兰氏阴性杆菌。基于这项研究,Buffy Coat制剂的革兰氏染色的敏感性为75%,特异性为79%。 正预测值和负预测值分别为43%和94%。 [Phil J Microbiol Infect Dis 2002; 31(2):70-73]关键词:Buffy Coat,血液培养,菌血症引入菌血症的早期诊断对每位临床医生至关重要,尤其是在脓毒症的情况下,迅速识别感染性过程,对病因学剂和适当抗菌素的鉴定会影响患者的生存。 传统上,这取决于培养物收集后24-72小时的血液培养物的恢复。 1通常,医生面临着建立适当的抗菌治疗的困境。 治疗要么被延迟,要么以昂贵的有害或略有有效的抗菌剂延迟或建立。 2这项前瞻性研究将评估Buffy Coat的革兰氏染色,作为在患有临床体征和脓毒症症状的成年患者中检测细菌血症的快速工具,从而是适当选择抗菌治疗的指南。 具体来说,作者要确定Buffy Coat Gram污渍在早期检测败血症患者中的敏感性,特异性,正面和负预测值。基于这项研究,Buffy Coat制剂的革兰氏染色的敏感性为75%,特异性为79%。正预测值和负预测值分别为43%和94%。[Phil J Microbiol Infect Dis 2002; 31(2):70-73]关键词:Buffy Coat,血液培养,菌血症引入菌血症的早期诊断对每位临床医生至关重要,尤其是在脓毒症的情况下,迅速识别感染性过程,对病因学剂和适当抗菌素的鉴定会影响患者的生存。传统上,这取决于培养物收集后24-72小时的血液培养物的恢复。1通常,医生面临着建立适当的抗菌治疗的困境。治疗要么被延迟,要么以昂贵的有害或略有有效的抗菌剂延迟或建立。2这项前瞻性研究将评估Buffy Coat的革兰氏染色,作为在患有临床体征和脓毒症症状的成年患者中检测细菌血症的快速工具,从而是适当选择抗菌治疗的指南。具体来说,作者要确定Buffy Coat Gram污渍在早期检测败血症患者中的敏感性,特异性,正面和负预测值。材料和方法的所有18岁及以上的成年患者的临床体征和症状定义为临床状况,其中有感染的证据加上对感染的系统性反应的证据,表现为以下两个或多个条件:1。温度> 38°C> 38°C或<36°C; 2。心率> 90次/分钟。或PACO2 <32 mm Hg; 4.WBC> 12,000/ Cu mm或<4,000/ Cu mm或> 10%未成熟(频段)表格;没有
季节性的p-葡萄糖酸和抗菌活性的季节性变化。Pharm Biol 46:889-893。Karamat,F,Olry,A,Munakata,R等。 (2014)香豆素 - 特定的pren- yltransferase催化了欧洲裔弗拉诺科·马林形成的关键生物合成反应。 工厂J 77:627-638。 Kohnen -Johannsen,KL和Kayser,O(2019)Tropane生物碱:化学,药理学,生物合成和生产。 分子24:796。 li,H,Ban,Z,Qin,H等。 (2015)一种异源膜 - 霍普的结合前蛋白基 - 转移酶复合物在苦酸途径中催化三种顺序芳族预奈尔。 植物生理学167:650-659。 Luo,X,Reiter,MA,D'Espaux,L等。 (2019a)大麻素及其在酵母中的非天然类似物的完全生物合成。 自然567:123-126。 luo,ZW,Cho,JS和Lee,SY(2019b)微生物炭疽甲酯的微生物产生,葡萄味。 Proc Natl Acad Sci USA 116:10749-10756。 MA,J,GU,Y,Marsafari,M等。 (2020)Yarrowia脂溶剂的合成生物学,系统生物学和代谢工程,可用于可持续的生物填充平台。 J Ind Microbiol Biotechnol 47:845-862。 mori,T,(2020)芳族前转移酶的酶学研究。 J Nat Med 74:501-512。 Munakata,R,Inoue,T,Koeduka,T等。 (2014)柠檬中的香烷基双磷酸 - 特异性芳基丙烯基转移酶的分子克隆和表征。 植物生理学166:80-90。 社区生物2:384。Karamat,F,Olry,A,Munakata,R等。(2014)香豆素 - 特定的pren- yltransferase催化了欧洲裔弗拉诺科·马林形成的关键生物合成反应。工厂J 77:627-638。Kohnen -Johannsen,KL和Kayser,O(2019)Tropane生物碱:化学,药理学,生物合成和生产。 分子24:796。 li,H,Ban,Z,Qin,H等。 (2015)一种异源膜 - 霍普的结合前蛋白基 - 转移酶复合物在苦酸途径中催化三种顺序芳族预奈尔。 植物生理学167:650-659。 Luo,X,Reiter,MA,D'Espaux,L等。 (2019a)大麻素及其在酵母中的非天然类似物的完全生物合成。 自然567:123-126。 luo,ZW,Cho,JS和Lee,SY(2019b)微生物炭疽甲酯的微生物产生,葡萄味。 Proc Natl Acad Sci USA 116:10749-10756。 MA,J,GU,Y,Marsafari,M等。 (2020)Yarrowia脂溶剂的合成生物学,系统生物学和代谢工程,可用于可持续的生物填充平台。 J Ind Microbiol Biotechnol 47:845-862。 mori,T,(2020)芳族前转移酶的酶学研究。 J Nat Med 74:501-512。 Munakata,R,Inoue,T,Koeduka,T等。 (2014)柠檬中的香烷基双磷酸 - 特异性芳基丙烯基转移酶的分子克隆和表征。 植物生理学166:80-90。 社区生物2:384。Kohnen -Johannsen,KL和Kayser,O(2019)Tropane生物碱:化学,药理学,生物合成和生产。分子24:796。li,H,Ban,Z,Qin,H等。(2015)一种异源膜 - 霍普的结合前蛋白基 - 转移酶复合物在苦酸途径中催化三种顺序芳族预奈尔。植物生理学167:650-659。Luo,X,Reiter,MA,D'Espaux,L等。(2019a)大麻素及其在酵母中的非天然类似物的完全生物合成。自然567:123-126。luo,ZW,Cho,JS和Lee,SY(2019b)微生物炭疽甲酯的微生物产生,葡萄味。Proc Natl Acad Sci USA 116:10749-10756。MA,J,GU,Y,Marsafari,M等。 (2020)Yarrowia脂溶剂的合成生物学,系统生物学和代谢工程,可用于可持续的生物填充平台。 J Ind Microbiol Biotechnol 47:845-862。 mori,T,(2020)芳族前转移酶的酶学研究。 J Nat Med 74:501-512。 Munakata,R,Inoue,T,Koeduka,T等。 (2014)柠檬中的香烷基双磷酸 - 特异性芳基丙烯基转移酶的分子克隆和表征。 植物生理学166:80-90。 社区生物2:384。MA,J,GU,Y,Marsafari,M等。(2020)Yarrowia脂溶剂的合成生物学,系统生物学和代谢工程,可用于可持续的生物填充平台。J Ind Microbiol Biotechnol 47:845-862。mori,T,(2020)芳族前转移酶的酶学研究。J Nat Med 74:501-512。Munakata,R,Inoue,T,Koeduka,T等。 (2014)柠檬中的香烷基双磷酸 - 特异性芳基丙烯基转移酶的分子克隆和表征。 植物生理学166:80-90。 社区生物2:384。Munakata,R,Inoue,T,Koeduka,T等。(2014)柠檬中的香烷基双磷酸 - 特异性芳基丙烯基转移酶的分子克隆和表征。植物生理学166:80-90。社区生物2:384。Munakata,R,Olry,A,Takemura,T等。 (2021)UBIA超家族蛋白的平行演化为植物中的芳族O-前转移酶。 Proc Natl Acad Sci USA 118:E2022294118。 Munakata,R,Takemura,T,Tatsumi,K等。 (2019)分离用于苯基苯甲酸的毛细血管膜膜 - 结合二苯基转移酶,并在酵母中重新设计Artepillin c的重新设计。 村上,A,Kuki,W,Takahashi,Y等。 (1997)Auraptene,一种香豆素,抑制12 -O-四甲基烷酰基-13-乙酸 - 乙酸 - 诱导的ICR小鼠皮肤中的Tu- Mor促进,可能是通过抑制白血细胞中过氧化含量的产生。 JPN J Cancer Res 88:443-452。 Nishikawa,S,Aoyama,H,Kamiya,M等。 (2016)Artepillin C,一种典型的巴西蜂胶成分,诱导棕色 - 像脂肪细胞在C3H10T1/2细胞中形成,原发性腹股沟白色脂肪组织 -Munakata,R,Olry,A,Takemura,T等。(2021)UBIA超家族蛋白的平行演化为植物中的芳族O-前转移酶。Proc Natl Acad Sci USA 118:E2022294118。Munakata,R,Takemura,T,Tatsumi,K等。 (2019)分离用于苯基苯甲酸的毛细血管膜膜 - 结合二苯基转移酶,并在酵母中重新设计Artepillin c的重新设计。 村上,A,Kuki,W,Takahashi,Y等。 (1997)Auraptene,一种香豆素,抑制12 -O-四甲基烷酰基-13-乙酸 - 乙酸 - 诱导的ICR小鼠皮肤中的Tu- Mor促进,可能是通过抑制白血细胞中过氧化含量的产生。 JPN J Cancer Res 88:443-452。 Nishikawa,S,Aoyama,H,Kamiya,M等。 (2016)Artepillin C,一种典型的巴西蜂胶成分,诱导棕色 - 像脂肪细胞在C3H10T1/2细胞中形成,原发性腹股沟白色脂肪组织 -Munakata,R,Takemura,T,Tatsumi,K等。(2019)分离用于苯基苯甲酸的毛细血管膜膜 - 结合二苯基转移酶,并在酵母中重新设计Artepillin c的重新设计。村上,A,Kuki,W,Takahashi,Y等。(1997)Auraptene,一种香豆素,抑制12 -O-四甲基烷酰基-13-乙酸 - 乙酸 - 诱导的ICR小鼠皮肤中的Tu- Mor促进,可能是通过抑制白血细胞中过氧化含量的产生。JPN J Cancer Res 88:443-452。Nishikawa,S,Aoyama,H,Kamiya,M等。 (2016)Artepillin C,一种典型的巴西蜂胶成分,诱导棕色 - 像脂肪细胞在C3H10T1/2细胞中形成,原发性腹股沟白色脂肪组织 -Nishikawa,S,Aoyama,H,Kamiya,M等。(2016)Artepillin C,一种典型的巴西蜂胶成分,诱导棕色 - 像脂肪细胞在C3H10T1/2细胞中形成,原发性腹股沟白色脂肪组织 -
3. Lourenço TGB、Heller D、Silva-Boghossian CM、Cotton SL、Paster BJ、Colombo APV 等。牙周健康和患病患者的微生物特征谱。临床牙周病学杂志。2014;41(11):1027-36。4. Arora N、Mishra A、Chugh S。微生物在牙周炎中的作用:我们到达顶峰了吗?除了红色复合体之外,还有一些未被发现的细菌。印度牙周病学会杂志。2014;18(1):9-13。5. Belibasakis GN、Belstrøm D、Eick S、Gursoy UK、Johansson A、Könönen E 等。牙周微生物学和牙周病的微生物病因:历史概念和当代观点。牙周病学 2000。 2023;第 1-17 页。6. Socransky SS、Haffajee AD。牙周微生物生态学。牙周病学。2000;38(1):135-87。7. Mohanty R、Asopa S、Joseph M、Singh B、Rajguru J、Saidath K 等人。红色复合体:口腔菌群中的多微生物聚集体:综述。家庭医学初级护理杂志。2019;8(11):3480-6。8. Shaikh HM、Patil S、Pangam T、Rathod K。多微生物协同作用和菌群失调:概述。印度牙周病学会杂志。2018;22(2):101-6。 9. Joshi V、Bhat K、Kugaji M、Ingalgi P。印度慢性牙周炎患者和牙周健康成人中伴放线杆菌的出现情况。印度牙周病学会杂志。2016;20(2):141-4。10. Holt SC、Kesavalu L、Walker S、Genco CA。牙龈卟啉单胞菌的毒力因子。牙周病学。1999;20:168-238。11. Slots J、Listgarten MA。牙龈拟杆菌、中间拟杆菌和伴放线杆菌与人类牙周病的关系。临床牙周病学杂志。1988;15(2):85-93。 12. Potempa J、Sroka A、Imamura T、Travis J。牙龈卟啉单胞菌的主要半胱氨酸蛋白酶和毒力因子:多域蛋白复合物的结构、功能和组装。Curr Protein Pept Sci。2003;4(6):397-407。13. Mayrand D、Grenier D。外膜囊泡的生物活性。Can J Microbiol。1989;35(6):607-13。14. Mihara J、Holt SC。从牙龈卟啉单胞菌W50中分离的成纤维细胞活化因子的纯化和表征。Infect Immun。1993;61(2):588-95。15. Mihara J、Yoneda T、Holt SC。牙龈卟啉单胞菌衍生的成纤维细胞活化因子在骨吸收中的作用。感染免疫。1993;61(8):3562-4。16. Onishi S、Honma K、Liang S、Stathopoulou P、Kinane D、Hajishengallis G 等人。Tannerella forsythia 亮氨酸富集重复蛋白 BspA 在牙龈上皮细胞中表达 Toll 样受体 2 介导的白细胞介素 8。感染免疫。2008;76(1):198-205。17. Armitage GC、Dickinson WR、Jenderseck RS、Levine SM、Chambers DW。龈下螺旋体百分比与牙周病严重程度的关系。牙周病学杂志。 1982;53(9):550–6。 18. Honma K、Inagaki S、Okuda K、Kuramitsu HK、Sharma A。连翘胞外多糖合成操纵子在生物膜发育中的作用。微生物病原体。 2007;42(4):156–66。 19. Socransky SS、Haffajee AD、Cugini MA、Smith C、Kent RL。龈下牙菌斑中的微生物复合体。临床牙周病学杂志。1998;25(2):134-44。20. Hajishengallis G. 牙周炎:从微生物免疫颠覆到全身炎症。自然免疫学评论。2015;15(1):30-44。21. Lamont RJ、Koo H、Hajishengallis G. 口腔微生物群:动态群落和宿主相互作用。自然微生物学评论。2009;16(12):745-59。22. Chakar C、Menassa G、Khayat R. 牙周微生物组第一部分:文献综述。国际阿拉伯牙科杂志。2021;12(1):41-7。23. Priyadharsini JV。通过计算机模拟验证非抗生素药物对乙酰氨基酚和布洛芬作为抗红色复合病原体的抗菌剂。《牙周病学杂志》。2019;90(12):1441-8。24. Ushanthika T、Girija ASS、Paramasivam A、Priyadharsini JV。通过计算机模拟方法识别利血平靶向的红色复合病原体中的毒力因子。《天然产物研究》。2021;35(11):1893-8。25. Maheaswari R、Kshirsagar J、Lavanya N。聚合酶链反应:牙周病学的分子诊断工具。《印度社会科学杂志》
目的:尿液是临床微生物实验室中最常见的检测材料。目前已经进行了自动分析,可以更快地获得结果并减少实验室技术人员 (LT) 的工作量。这些自动化系统引入了数字成像概念。PhenoMATRIX (PHM) 是一款人工智能软件,它融合了图片算法和用户规则以提供推定结果。本研究旨在使用 PHM 设计定制的工作流程,执行其验证并检查其在日常实践中的性能。方法:使用两个数据集合,包括来自肾造口术/输尿管造口术和人工膀胱 (US) 的 96 和 135 个尿液样本、来自导管 (UC) 的 948 和 1257 个尿液样本以及 3251 和 2027 个中段尿液 (MSU),将 LT 结果与使用两个版本的 PHM 获得的结果进行比较。另外 19 个 US、102 个 UC 和 508 个 MSU 用于监测常规实施 3 个月后的性能水平。结果:修订前后,PHM 第一版与 LT 结果之间的一致性分别为 83%(95% 置信区间 [CI],74.3 e 90.2)和 83%(95% CI,75.3 e 90.9)(美国),66.7%(95% CI,63.5 e 69.5)和 71.7%(95% CI,68.8 e 74.4)(UC)以及 65.4%(95% CI,63.8 e 67.1)和 76%(95% CI,74.1 e 77.1)(MSU)。第二版结果有所改善,修订前后与 LT 结果的一致性分别为 96.2% (95% CI, 91.6 e 98.8) 和 97% (95% CI, 92.6 e 99.2) (US)、87.5% (95% CI, 85.5 e 89.2) 和 88.9% (95% CI, 87.0 e 90.5) (UC) 以及 91% (95% CI, 89.7 e 92.1) 和 92% (95% CI, 91.1 e 93.4) (MSU)。常规研究证实了 PHM 结果的可靠性,总体一致性为 92% (95% CI, 90.0 e 94.2)。结论:PHM 性能优异,>90% 的结果与 LT 一致。 PHM 可以帮助标准化和确保结果的准确性,在分析工作流程中优先考虑阳性板,并可能节省 LT 时间。Olivier Dauwalder,Clin Microbiol Infect 2021;27:1168.e1 e 1168.e6 © 2020 欧洲临床微生物学和传染病学会。由 Elsevier Ltd. 出版。保留所有权利。
1. Lowell, JT 等人 (2021) 四染色体规模基因组和全基因组注释可加速山核桃树育种。Nat Commun 12, 4125。DOI:10.1038/s41467-021-24328-w 2. Hufford, MB 等人 (2021) 26 种不同玉米基因组的从头组装、注释和比较分析。Science 373, 6555。DOI:10.1126/science.abg5289 3. Sun, X. 等人 (2020) 分阶段二倍体基因组组装和全基因组为苹果驯化的遗传历史提供了见解。Nat Genet 52, 1423–1432。 DOI:10.1038/s41588-020-00723-9 4. Liu, Y. 等人 (2020) 野生和栽培大豆细胞的全基因组。Cell 182, 1 162-176。DOI:10.1016/Cell 2020.05.023 5. Kingan, SB 等人 (2019) 使用 PacBio Sequel II 系统对单个野外采集的斑点灯笼蝇 (lycorma delicatula) 进行高质量基因组组装,GigaScience 8, 10, giz122。DOI:10.1093/gigascience/giz122 6. Samils, B. 等人(2021) 开发一种 PacBio 长读测序检测方法,用于高通量检测小麦根结线虫前部的杀菌剂抗性。Microbiol 12, 1610。DOI:10.3389/fmicb.2021.692845 7. Hou, Z., et al. (2021) 对中国新发现的松木线虫昆虫媒介进行比较转录组分析,揭示与宿主植物适应相关的假定基因。BMC Genomics 22, 189。DOI: 10.1186/s12864-021-07498-1 8. Bickhart, DM, et al. (2019) 通过结合长读组装和邻位连接将病毒和抗菌素耐药性基因分配给复杂微生物群落中的微生物宿主。 Genome Biol 20, 153。DOI:10.1186/s13059-019-1760-x 9. 联合国 (2019) 世界人口增长速度放缓,预计到 2050 年将达到 97 亿,并可能在 2100 年左右达到峰值,达到近 110 亿 10. Owen, JR 等人 (2021) 利用 CRISPR-Cas9 系统在牛受精卵中一步生成靶向敲入小牛。BMC Genomics 22, 118。DOI:10.1186/s12864-021-07418-3 11. Kosicki, M. 等人 (2018) 修复 CRISPR-Cas9 诱导的双链断裂会导致大量缺失和复杂的重排。自然生物技术,36,765-771。