系统评价本文旨在了解肠道菌群改变与与ASD相关的行为和生理障碍之间的关系,重点是营养干预措施和疗法。使用PubMed,Scopus和Cochrane库等数据库进行了2008年至2024年之间的书目审查。在葡萄牙,英语,西班牙语和法语中选择了19篇完整的文章,这些文章涉及ASD的微生物,代谢和行为方面以及治疗性干预措施。结果指出,肠道营养不良是ASD患者的反复出现的特征,与肠道通透性增加,全身性炎症和代谢变化有关。粮食选择性(在ASD患者中常见)会加剧图片,从而导致明显的营养缺乏并增加胃肠道问题。治疗性干预措施,例如使用益生菌,益生元,粪便移植和限制性饮食,这是有希望的,促进了肠道菌群调节,减少炎症并改善胃肠道和行为症状。因此,改变的肠道菌群在ASD病理生理学中起着重要作用,从而影响了行为和生理方面。基于微生物群调制和食物再教育的治疗干预措施有望改善患者的生活质量,但需要更广泛,更标准化的研究才能建立有效和安全的方案。关键字:自闭症谱系障碍,胃肠道菌群,饮食..
项目描述:人类微生物组从根本上与人类健康和疾病有关。一个方面是,病原体可以隐藏在健康人的微生物中,如果他们得到改变,可能会引起疾病。在这方面的一个主要例子是金黄色葡萄球菌。侵略性病原体在1/3人口的前鼻孔中定居,每年造成与感染相关的死亡> 1.000.000> 1.000.000。金黄色葡萄球菌形成的位移人类微生物组是防止感染的有前途的策略。我们对使金黄色葡萄球菌殖民某些人的个人的原因缺乏核心理解,但已知微生物组的组成很重要。在我们的实验室中,我们拥有代表健康和金黄色葡萄球菌感染的微生物组的广泛应变收集。我们评估无害微生物组成员与鉴定预防病原体定植的益生菌共生的病原体之间相互作用的分子机制。在这个项目中,我们将使用数百种鼻分离株,并使用自动化系统研究它们对病原体生长和生理的影响。将使用转座子突变库以及转录组和代谢组学方法来鉴定与金黄色葡萄球菌促进协作/竞争的遗传特征,然后研究分子和生化水平。最后,使用具有人源化微生物组的无菌动物模型在体内将在体内测试菌株的能力。鼻气质通过限制铁载体的可用性来减少金黄色葡萄球菌的增殖。(2021)。参考文献:1)Zhao,Y.,Bitzer,A.,Power,J.J.,Belikova,D.,Salazar,B.O。T.,Adolf,L。A.,Gerlach,D.L.,Krismer,B。,&Heilbronner,S。(2024)。isme J. https://doi.org/10.1093/ismejo/wrae123 2)Heilbronner,S.,Krismer,B.,Brotz-Oesterhelt,H。,H。,&Peschel,&Peschel,A。细菌素的微生物组作用。nat rev microbiol。https://doi.org/10.1038/s41579-021-00569-W 3)Adolf,L。A.和Heilbronner,S。(2022)。 细菌物种之间的营养相互作用定植人类鼻腔:当前的知识和未来前景。 代谢物,12(6)。 https://doi.org/10.3390/metabo12060489https://doi.org/10.1038/s41579-021-00569-W 3)Adolf,L。A.和Heilbronner,S。(2022)。细菌物种之间的营养相互作用定植人类鼻腔:当前的知识和未来前景。代谢物,12(6)。https://doi.org/10.3390/metabo12060489
Agrell I.Zurökologieder Collembolen。Unteruchungen Im Schwedischen Lappland。OPUSC Entomo Suppl。1941; 3:236。Albert C,NeßhöverC,SchröterM,Wittmer H,Bonn A,Burkhard B等。 朝着德国的国家生态系统评估:一种综合方法的认罪。 Gaia - Ecol Perspect Sci Soc。 2017; 26:27 - 33。 Anthony MA,Bender SF,Van der Heijden MGA。 列举土壤生物多样性。 Proc Natl Acad Sci USA。 2023; 120:e2304663120。 Baas J,Jager T,Kooijman B. 在评估混合物的毒性作用中对DEB理论的回顾。 SCI总环境。 2010; 408:3740 - 5。 Banerjee S,Van der Heijden Mga。 土壤微生物组和一种健康。 nat rev microbiol。 2023; 21:6 - 20。 Bardgett Rd,Van der Putten WH。 地下生物多样性和生态系统功能。 自然。 2014; 515:505 - 11。 Bardgett Rd,Wardle DA。 地上 - 地下链接:生物相互作用,生态系统过程和全球变化。 英国牛津:牛津大学出版社; 2010。 Bartkowski B,Bartke S.农业土壤的利用点:欧洲农民决策的经验研究回顾。 可持续性。 2018; 10:3179。 Bartkowski B,Bartke S,Hagemann N,HansjürgensB,Schröter -SchlaackC。用于德国农业土壤政策的治理破坏框架的应用。 土壤。 2021; 7:495 - 509。 Baum CM,Bartkowski B. 能源Res Soc Sci。Albert C,NeßhöverC,SchröterM,Wittmer H,Bonn A,Burkhard B等。朝着德国的国家生态系统评估:一种综合方法的认罪。Gaia - Ecol Perspect Sci Soc。2017; 26:27 - 33。Anthony MA,Bender SF,Van der Heijden MGA。列举土壤生物多样性。Proc Natl Acad Sci USA。2023; 120:e2304663120。Baas J,Jager T,Kooijman B.在评估混合物的毒性作用中对DEB理论的回顾。SCI总环境。 2010; 408:3740 - 5。 Banerjee S,Van der Heijden Mga。 土壤微生物组和一种健康。 nat rev microbiol。 2023; 21:6 - 20。 Bardgett Rd,Van der Putten WH。 地下生物多样性和生态系统功能。 自然。 2014; 515:505 - 11。 Bardgett Rd,Wardle DA。 地上 - 地下链接:生物相互作用,生态系统过程和全球变化。 英国牛津:牛津大学出版社; 2010。 Bartkowski B,Bartke S.农业土壤的利用点:欧洲农民决策的经验研究回顾。 可持续性。 2018; 10:3179。 Bartkowski B,Bartke S,Hagemann N,HansjürgensB,Schröter -SchlaackC。用于德国农业土壤政策的治理破坏框架的应用。 土壤。 2021; 7:495 - 509。 Baum CM,Bartkowski B. 能源Res Soc Sci。SCI总环境。2010; 408:3740 - 5。Banerjee S,Van der Heijden Mga。土壤微生物组和一种健康。nat rev microbiol。2023; 21:6 - 20。Bardgett Rd,Van der Putten WH。地下生物多样性和生态系统功能。自然。2014; 515:505 - 11。Bardgett Rd,Wardle DA。地上 - 地下链接:生物相互作用,生态系统过程和全球变化。英国牛津:牛津大学出版社; 2010。 Bartkowski B,Bartke S.农业土壤的利用点:欧洲农民决策的经验研究回顾。 可持续性。 2018; 10:3179。 Bartkowski B,Bartke S,Hagemann N,HansjürgensB,Schröter -SchlaackC。用于德国农业土壤政策的治理破坏框架的应用。 土壤。 2021; 7:495 - 509。 Baum CM,Bartkowski B. 能源Res Soc Sci。英国牛津:牛津大学出版社; 2010。Bartkowski B,Bartke S.农业土壤的利用点:欧洲农民决策的经验研究回顾。 可持续性。 2018; 10:3179。 Bartkowski B,Bartke S,Hagemann N,HansjürgensB,Schröter -SchlaackC。用于德国农业土壤政策的治理破坏框架的应用。 土壤。 2021; 7:495 - 509。 Baum CM,Bartkowski B. 能源Res Soc Sci。Bartkowski B,Bartke S.农业土壤的利用点:欧洲农民决策的经验研究回顾。可持续性。2018; 10:3179。Bartkowski B,Bartke S,Hagemann N,HansjürgensB,Schröter -SchlaackC。用于德国农业土壤政策的治理破坏框架的应用。土壤。2021; 7:495 - 509。Baum CM,Bartkowski B.能源Res Soc Sci。这并不是全部关于资金:从欧洲的角度来促进可持续发展研究中的纪律间合作。2020; 70:101723。Beaumelle L,Thouvenot L,Hines J,Jochum M,Eisenhauer N,Phillips HRP。土壤动物动物的多样性和化学压力源:知识差距和路线图的综述,以供未来研究。ecograph。2021; 44:845 - 59。Bender SF,Plantenga F,Neftel A,Jocher M,Oberholzer HR,KöhlLL等。土壤真菌与植物之间的共生关系减少了n 2 o土壤的排放。isme J.2014; 8:1336 - 45。Bethwell C,Burkhard B,Daedlow K,Sattler C,Recking M,ZanderP。迈向农业生态系统中提供生态系统服务的增强指示。 环境评估。 2021; 193:269。 Bradford MA,Jones TH,Bardgett RD,Black Hij,Boag B,Bonkowski M等。 土壤动物群社区组成对模型草原生态系统的影响。 科学。 2002; 298:615 - 8。 Bradford MA,Wood SA,Bardgett RD,Black Hij,Bonkowski M,Eggers T等。 在生态系统过程的响应中不连续,以及对改变土壤社区组成的多功能性。 Proc Natl Acad Sci USA。 2014; 111:14478 - 83。 Brevik EC,Fenton TE,Homburg,J。 A. 美国土壤科学中的历史亮点 - 1970年代的史前。 catena。 2016; 146:111 - 27。 Brevik EC,Sauer TJ。 土壤和人类健康研究的过去,现在和未来。 土壤。 2015; 1:35 - 46。 Appl土壤Ecol。Bethwell C,Burkhard B,Daedlow K,Sattler C,Recking M,ZanderP。迈向农业生态系统中提供生态系统服务的增强指示。环境评估。2021; 193:269。Bradford MA,Jones TH,Bardgett RD,Black Hij,Boag B,Bonkowski M等。 土壤动物群社区组成对模型草原生态系统的影响。 科学。 2002; 298:615 - 8。 Bradford MA,Wood SA,Bardgett RD,Black Hij,Bonkowski M,Eggers T等。 在生态系统过程的响应中不连续,以及对改变土壤社区组成的多功能性。 Proc Natl Acad Sci USA。 2014; 111:14478 - 83。 Brevik EC,Fenton TE,Homburg,J。 A. 美国土壤科学中的历史亮点 - 1970年代的史前。 catena。 2016; 146:111 - 27。 Brevik EC,Sauer TJ。 土壤和人类健康研究的过去,现在和未来。 土壤。 2015; 1:35 - 46。 Appl土壤Ecol。Bradford MA,Jones TH,Bardgett RD,Black Hij,Boag B,Bonkowski M等。土壤动物群社区组成对模型草原生态系统的影响。科学。2002; 298:615 - 8。Bradford MA,Wood SA,Bardgett RD,Black Hij,Bonkowski M,Eggers T等。在生态系统过程的响应中不连续,以及对改变土壤社区组成的多功能性。Proc Natl Acad Sci USA。2014; 111:14478 - 83。Brevik EC,Fenton TE,Homburg,J。A.美国土壤科学中的历史亮点 - 1970年代的史前。catena。2016; 146:111 - 27。Brevik EC,Sauer TJ。土壤和人类健康研究的过去,现在和未来。土壤。2015; 1:35 - 46。Appl土壤Ecol。Burkhardt U,Russell DJ,Decker P,DöhlerM,HöferH,Lesch S等。GBIF-德国的Edaphobase项目 - 一种新的在线土壤 - 动物学数据仓库。2014; 83:3 - 12。
摘要简介:耐多药细菌是指通过突变对多种抗生素产生耐药性的细菌。在医院环境中,打破这些细菌传播链的最有效方法是手部卫生。目的:描述 2023 年 1 月至 12 月马瑙斯一家热带疾病参考医院 ICU 中多重耐药菌株的生长情况。方法:这是对 Heitor Vieira Dourado 博士热带医学基金会-FMT/HVD 的 CCIH 数据库中现有的二手信息的调查。结果:2023年1月至12月,共报告60例医院相关感染(IRAS),其中32例(53.3%)为呼吸机相关性肺炎(PAVM),21例(35%)为中心导管原发性血流感染(IPCS),7例(11.7%)为留置膀胱导管相关尿路感染(ITU)。在耐药情况方面,最常见的微生物是对万古霉素和苯唑西林敏感的金黄色葡萄球菌(33.3%)、对碳青霉烯类药物耐药的产气克雷伯菌(13.7%)和对碳青霉烯类药物耐药的大肠杆菌(13.7)。在病理情况方面,ICU内发生医院感染的患者中有45.8%患有艾滋病。结论:对医院微生物学特征的分析,以及以及微生物的耐药性特征,是预防和对抗医源性感染 (HAI) 的极其有用的工具。关键词:感染学。流行病学。交叉感染。不良事件
4 灭活疫苗预防 SARS CoV-2 感染(covid-19)的安全性和免疫原性研究。试验号 NCT04352608。https://clinicaltrials.gov/ct2/show/NCT04352608。5 Walls AC, Park YJ, Tortorici MA 等人。SARS-CoV-2 刺突糖蛋白的结构、功能和抗原性。Cell 2020;181:281-292.e6。10.1016/j.cell.2020.02.058 32155444 6 Zhou P, Yang XL, Wang XG 等人。与可能源自蝙蝠的新型冠状病毒相关的肺炎疫情。Nature 2020;579:270-3。 10.1038/s41586-020-2012-7 32015507 7 朱娜、张丹、王伟等。中国新型冠状病毒调查研究组。2019 年中国肺炎患者中发现的一种新型冠状病毒。N Engl J Med 2020;382:727-33。10.1056/NEJMoa2001017 31978945 8 牛津大学。一项关于候选 COVID-19 疫苗 (COV001) 的研究。试验编号 NCT04324606。https://www.clinicaltrials.gov/ct2/show/NCT04324606 9 Mckay PF、Hu K、Blakney AK 等。自扩增 RNA SARS-CoV-2 脂质纳米颗粒疫苗诱导的临床前抗体滴度和病毒中和与康复的 COVID-19 患者相同。bioRxiv 2020.04.22.055608 [预印本] 2020. 10.1101/2020.04.22.055608 10 Moorlag SJCFM、Arts RJW、van Crevel R、Netea MG。BCG 疫苗对病毒感染的非特异性影响。Clin Microbiol Infect 2019;25:1473-8。10.1016/j.cmi.2019.04.020 31055165 11 Guallar-Garrido S、Julián E. 卡介苗 (BCG) 治疗膀胱癌:最新进展。 Immunotargets Ther 2020;9:1-11。10.2147/ITT.S202006 32104666 12 Miller A、Reandelar MJ、Fasciglione K 等人。普及 BCG 疫苗接种政策与降低 COVID-19 发病率和死亡率之间的相关性:一项流行病学研究。MedRxiv 2020.03.24.20042937 [预印本] 10.1101/2020.03.24.20042937。13 Dayal D、Gupta S。将 BCG 疫苗接种与 COVID-19 联系起来:附加数据。MedRxiv 2020.04.07.20053272。 [预印本] 2020,10.1101/2020.04.07.20053272 14 美国国家医学图书馆。https://www.clinicaltrials.gov/ct2/results?cond=COVID-19+&term=vaccine 15 Chumakov K, Gallo R. 旧疫苗能否成为新型冠状病毒的天赐之物?2020.https://eu.usatoday.com/story/opinion/2020/04/21/oral-polio-vaccine-has-potential-treat-coronavirus-column/5162859002/ 16 Young A, Neumann B, Mendez RF 等人。SARS-CoV-2 与麻疹、腮腺炎和风疹病毒中的同源蛋白结构域:MMR 疫苗可能提供针对 COVID-19 保护的初步证据。 MedRxiv 2020.04.10.20053207。[预印本] 2020.10.1101/2020.04.10.20053207
[1] Egger G,Liang G,Aparicio A等。人类疾病的表观遗传学和表观遗传疗法的前景。 自然,2004,429:457-63 [2] Varmus H.为基于基因的药物做好准备。 New Engl J Med,2002,347:1526-7 [3] Pogue RE,Cavalcanti DP,Shanker S等。 罕见的遗传疾病:诊断,治疗和在线资源的更新。 Div> Discov今天,2018年,23:187-95 [4] Fischer A,Cavazzana-Calvo M.遗传疾病的基因治疗。 Lancet,2008,371:2044-7 [5] Porteus M.基因组编辑:一种新的人类治疗方法。 Annu Rev Pharmacol Toxicol,2016,56:163-90 [6] Cox DBT,Platt RJ,ZhangF。治疗基因组编辑:前景和挑战。 nat Med,2015,21:121-31 [7] Barrangou R,Fremaux C,Deveau H等。 crispr提供了对原核生物中病毒的抗药性。 Science,2007,315:1709-12 [8] Deltcheva E,Chylinski K,Sharma CM等。 CRISPR RNA通过反式编码的小RNA和宿主因子RNase III成熟。 自然,2011,471:602-7 [9] Cong L,Ran FA,Cox D等。 使用CRISPR/CAS系统的多重基因组工程。 Science,2013,339:819-23 [10] Jinek M,Chylinski K,Fonfara I等。 适应性细菌免疫中可编程的双RNA引导的DNA内切酶。 Science,2012,337:816-21 [11] Maruyama T,Dougan SK,Truttmann MC等。 通过抑制非同源末端连接来提高精确基因组编辑的效率。 nat Biotechnol,2015,33:538-42 [12] Shmakov S,Smargon A,Scott D等。 快照:2类CRISPR-CAS系统。人类疾病的表观遗传学和表观遗传疗法的前景。自然,2004,429:457-63 [2] Varmus H.为基于基因的药物做好准备。New Engl J Med,2002,347:1526-7 [3] Pogue RE,Cavalcanti DP,Shanker S等。罕见的遗传疾病:诊断,治疗和在线资源的更新。Div> Discov今天,2018年,23:187-95 [4] Fischer A,Cavazzana-Calvo M.遗传疾病的基因治疗。Lancet,2008,371:2044-7 [5] Porteus M.基因组编辑:一种新的人类治疗方法。Annu Rev Pharmacol Toxicol,2016,56:163-90 [6] Cox DBT,Platt RJ,ZhangF。治疗基因组编辑:前景和挑战。nat Med,2015,21:121-31 [7] Barrangou R,Fremaux C,Deveau H等。crispr提供了对原核生物中病毒的抗药性。Science,2007,315:1709-12 [8] Deltcheva E,Chylinski K,Sharma CM等。CRISPR RNA通过反式编码的小RNA和宿主因子RNase III成熟。自然,2011,471:602-7 [9] Cong L,Ran FA,Cox D等。使用CRISPR/CAS系统的多重基因组工程。Science,2013,339:819-23 [10] Jinek M,Chylinski K,Fonfara I等。适应性细菌免疫中可编程的双RNA引导的DNA内切酶。Science,2012,337:816-21 [11] Maruyama T,Dougan SK,Truttmann MC等。通过抑制非同源末端连接来提高精确基因组编辑的效率。nat Biotechnol,2015,33:538-42 [12] Shmakov S,Smargon A,Scott D等。快照:2类CRISPR-CAS系统。2类CRISPR-CAS系统的多样性和演变。Nat Rev Microbiol,2017,15:169-82 [13] Makarova KS,Zhang F,Koonin EV。Cell,2017,168:328-328.e1 [14] Zetsche B,Gootenberg JS,Abudayyeh Oo等。CPF1是2类CRISPR- CAS系统的单个RNA引导的内切酶。 Cell,2015,163:759-71 [15] Ran Fa,Cong L,Yan WX等。 使用金黄色葡萄球菌Cas9的体内基因组编辑。 自然,2015,520:186-91 [16] Kim E,Koo T,Park SW等。 在体内基因组编辑中,带有弯曲杆菌的小Cas9直系同源CPF1是2类CRISPR- CAS系统的单个RNA引导的内切酶。Cell,2015,163:759-71 [15] Ran Fa,Cong L,Yan WX等。使用金黄色葡萄球菌Cas9的体内基因组编辑。 自然,2015,520:186-91 [16] Kim E,Koo T,Park SW等。 在体内基因组编辑中,带有弯曲杆菌的小Cas9直系同源使用金黄色葡萄球菌Cas9的体内基因组编辑。自然,2015,520:186-91 [16] Kim E,Koo T,Park SW等。在体内基因组编辑中,带有弯曲杆菌的小Cas9直系同源在体内基因组编辑中,带有弯曲杆菌的小Cas9直系同源
摘要这项研究的目的是概述面部这种罕见的,侵入性真菌感染的可能表现或形式,将其从诊断到治疗进行比较。这是一项观察性的,描述性的病例类型研究,在该研究中,所有被诊断出具有真菌感染的病例,面对州长OtávioLage de Siqueira,Goi-Nia,GO,巴西GO,在巴西Goi-Nia。临床数据,并在每种情况下都评估了射线照相特征。所有病例均已通过显微镜进行修订,以确认诊断。3例通过粘膜症感染真菌感染的患者,女性为1例,男性为2例。均具有常见的临床表现:症状,上颌鼻窦炎,面神经障碍和广泛的区域坏死。通过微生物检查和计算机断层扫描进行了病例诊断性阐明。是通过多模式方法进行的,包括控制潜在的诱发因素,以理想剂量的早期给活性抗真菌剂施用,并完全去除任何受感染的组织。总之,粘核病感染很少见,侵入性且通常是致命的,生存率较低。它通常在免疫力受损的患者中,尤其是那些糖尿病代理的患者。关于这种涉及气隙系统的疾病的确定管理仍然存在文献稀缺。本文强调需要采用积极的多模式治疗方法来纠正潜在的诱发因素和早期诊断,以提供最佳的生存机会。关键词:机会性感染;粘膜症;糖尿病。
[4] Gibson B, Wilson DJ, Feil E 等人。野生环境中细菌倍增时间的分布。Proc Biol Sci, 2018, 285: 20180789 [5] Yu J, Liberton M, Cliften PF 等人。Synechococcus elongatus UTEX 2973,一种利用光和二氧化碳进行生物合成的快速生长蓝藻底盘。Sci Rep, 2015, 5: 8132 [6] Paddon CJ, Westfall PJ, Pitera DJ 等人。强效抗疟药青蒿素的高水平半合成生产。Nature, 2013, 496: 528-32 [7] Lin MT, Occhialini A, Andralojc PJ 等人。一种更快的 Rubisco,具有提高作物光合作用的潜力。 Nature, 2014, 513: 547-50 [8] Bailey-Serres J, Parker JE, Ainsworth EA 等. 提高作物产量的遗传策略。Nature, 2019, 575: 109-18 [9] Gleizer S, Ben-Nissan R, Bar-On YM 等. 转化大肠杆菌从二氧化碳生成所有生物质碳。Cell, 2019, 179: 1255-63 [10] Chen FYH, Jung HW, Tsuei CY 等. 将大肠杆菌转化为仅靠甲醇生长的合成甲基营养菌。Cell, 2020, 182: 933-46 [11] Kaneko T, Sato S, Kotani H 等.单细胞蓝藻Synechocystis sp. 菌株 PCC6803 的基因组序列分析。II. 整个基因组的序列测定和潜在蛋白质编码区的分配。DNA Res,1996,3:109 [12] van Alphen P、Najafabadi HA、dos Santos FB 等人。通过确定其培养的局限性来提高 Synechocystis sp. PCC 6803 的光自养生长率。Biotechnol J,2018,13:e1700764 [13] Sheng J、Kim HW、Badalamenti JP 等人。温度变化对台式光生物反应器中 Synechocystis sp PCC6803 的生长率和脂质特性的影响。 Bioresour Technol, 2011, 102: 11218-25 [14] 张胜山, 郑胜南, 孙建华, 等. 通过便捷引入 AtpA-C252F 突变快速提高蓝藻细胞工厂的高光和高温耐受性。Front Microbiol, 2021, 12: 647164 [15] Ungerer J, Lin PC, Chen HY, 等. 调整光系统化学计量和电子转移蛋白是蓝藻 Synechococcus elongatus UTEX 2973 快速生长的关键。Mbio, 2018, 9: e02327-17 [16] Wlodarczyk A, Selao TT, Norling B, 等. 新发现的 Synechococcus sp. PCC 11901 是一种可高产生物量的强健蓝藻菌株。Commun Biol, 2020, 3: 215 [17] Jaiswal D, Sengupta A, Sohoni S 等人。从印度分离的一种强健、快速生长且可自然转化的蓝藻 Synechococcus elongatus PCC 11801 的基因组特征和生化特性。Sci Rep, 2018, 8: 16632 [18] Jaiswal D, Sengupta A, Sengupta S 等人。一种新型蓝藻 Synechococcus elongatus PCC 11802 与其邻居 PCC 11801 相比具有不同的基因组和代谢组学特征。Sci Rep, 2020, 10:
1。Luckow VA,萨默斯医学博士。杆状病毒表达载体发展的趋势。生物技术。1988; 6(1):47-55。 doi:10。 1038/nbt0188-47 2。 Possee Rd。 杆状病毒作为基因表达载体。 Annu Rev Micro-Biol。 1988; 42:177-199。 doi:10.1146/annurev.mi.42.100188.001141 3。 Kost T.重组杆状病毒作为昆虫和哺乳动物细胞的表达载体。 Curr Opin Biotechnol。 1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。 Pijlman GP。 包裹的病毒样颗粒作为针对病原藻病毒的疫苗。 生物技术j。 2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。1988; 6(1):47-55。 doi:10。1038/nbt0188-47 2。Possee Rd。杆状病毒作为基因表达载体。Annu Rev Micro-Biol。1988; 42:177-199。 doi:10.1146/annurev.mi.42.100188.001141 3。 Kost T.重组杆状病毒作为昆虫和哺乳动物细胞的表达载体。 Curr Opin Biotechnol。 1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。 Pijlman GP。 包裹的病毒样颗粒作为针对病原藻病毒的疫苗。 生物技术j。 2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。1988; 42:177-199。 doi:10.1146/annurev.mi.42.100188.001141 3。Kost T.重组杆状病毒作为昆虫和哺乳动物细胞的表达载体。Curr Opin Biotechnol。1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。 Pijlman GP。 包裹的病毒样颗粒作为针对病原藻病毒的疫苗。 生物技术j。 2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。Pijlman GP。包裹的病毒样颗粒作为针对病原藻病毒的疫苗。生物技术j。2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。杆状病毒表达系统的机会和挑战。J Invertebr Pathol。2011; 107(增刊):S3-S15。doi:10.1016/j.jip.2011.05.001 6。Kost TA,Condrey JP,Jarvis DL。杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。nat生物技术。2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2005; 23(5):567-575。 doi:10.1038/nbt1095 7。rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。疫苗发育中的病毒样颗粒。专家Rev疫苗。2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。Cox M.现代技术:首选的生物安全策略?vaccin。2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。mbio。2021; 12:e0181321。n Engl J Med。显示糖基化尖峰S1结构域的两组分纳米颗粒疫苗可诱导针对SARS-COV-2变体的中和抗体反应。doi:10.1128/mbio.01813-21 10。Shinde V,Bhikha S,Hoosain Z等。NVX-COV2373 COVID-19疫苗对B.1.351变体的功效。 2021; 384(20):1899-1909。 doi:10.1056/nejmoa2103055 11。 Anurag SR,Winkle H.逐饰方法。 nat生物技术。 2009; 27(1):26-34。 doi:10.1038/nbt0109-26 12。 Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。 J IND微生物生物技术。 2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测NVX-COV2373 COVID-19疫苗对B.1.351变体的功效。2021; 384(20):1899-1909。 doi:10.1056/nejmoa2103055 11。Anurag SR,Winkle H.逐饰方法。nat生物技术。2009; 27(1):26-34。 doi:10.1038/nbt0109-26 12。 Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。 J IND微生物生物技术。 2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测2009; 27(1):26-34。 doi:10.1038/nbt0109-26 12。Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。 J IND微生物生物技术。 2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。J IND微生物生物技术。2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测Carvell JP,Dowd JE。使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。细胞技术。2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测2006; 50(1 - 3):35-48。 doi:10。1007/s10616-005-3974-x 14。Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关
技术 HPLC、IC、GCMS、ICPOES、分子克隆、蛋白质印迹、凝集素印迹、酶动力学、生物反应器培养(大肠杆菌、微藻、蓝藻)、共聚焦显微镜、流式细胞术、实时 qPCR、PCR、SDS PAGE、提取(蛋白质、氨基酸、脂肪酸、色素、碳水化合物、PHB) 出版物 Kriechbaum R.、Kronlachner L.、Limbeck A.、Kopp J.、Spadiut O.;迈向循环经济——利用小球藻重新利用马铃薯加工行业的副产品。环境管理杂志 (2024)。DOI:https://doi.org/10.1016/j.jenvman.2024.121796 Kriechbaum R.、Spadiut O.、Kopp J.;普通小球藻对呋喃化合物的生物转化——揭示生物技术潜力。微生物(2024)。 DOI:https://doi.org/10.3390/microorganisms12061222 Grivalský T、Lakatos GE、Štěrbová K、Manoel JAC、Beloša R、Divoká P、Kopp J、Kriechbaum R、Spadiut O、Zwirzitz A、Trenzinger K、Masojídek J (2024)集胞藻 MT_a24 在水道池中利用城市废水生产聚-β-羟基丁酸酯。应用微生物学与生物技术 108 (1):1- 12。doi:10.1007/s00253-023-12924-3 Kriechbaum R、Loaiza SS、Friedl A、Spadiut O、Kopp J (2023) 利用小球藻产生的稻草衍生的半纤维素水解物:为生物精炼方法做出贡献。应用藻类学杂志。doi:10.1007/s10811-023-03082-0 Doppler P、Kriechbaum R、Spadiut O (2022) 使用流式细胞术对丝状蓝藻 Anabaena sp. 进行高通量表征。微生物学方法杂志 199:106510。 doi:10.1016/j.mimet.2022.106510 Doppler P、Gasser C、Kriechbaum R、Ferizi A、Spadiut O (2021) 使用超声增强 ATR-FTIR 光谱探针对光生物反应器培养的集胞藻中的聚羟基丁酸酯进行原位定量分析。生物工程 8 (9):129 Doppler P、Kriechbaum R、Käfer M、Kopp J、Remias D、Spadiut O (2022) Coelastrella terrestris 用于生产 Adonixanthin:生理表征和次级类胡萝卜素生产力评估。 Marine Drugs 20 (3):175 Doppler P, Kriechbaum R , Singer B, Spadiut O (2021) 使微藻培养物再次无菌——利用荧光激活细胞分选的快速简便的工作流程。微生物方法杂志 186:106256。doi:https://doi.org/10.1016/j.mimet.2021.106256 Kriechbaum R , Ziaee E, Grünwald-Gruber C, Buscaill P, van der Hoorn RAL, Castilho A (2020) BGAL1 耗竭可提高 N. benthamiana 中 N- 和 O-聚糖的 β-半乳糖基化水平。植物生物技术杂志 18 (7):1537-1549。 doi:10.1111/pbi.13316 会议和研讨会 AlgaEurope – 希腊雅典 12/2024 海报展示:“循环水产养殖中的小球藻 – 鱼类废水中分析物的定量和预测”研讨会 Kreislauf Alge – Vom Abwasser zur Ressource 06/2024 口头报告和联合主持人