厌氧消化(AD)是将富含碳的生物量(包括木质纤维素废物)转化为能量(富含甲烷的沼气)和增值产品(例如生物肥料)的最先进的技术。富含甲烷的沼气可以通过称为生物甲基化的过程进一步升级为天然气质量。木质纤维素降解。木质纤维素是植物生物量的主要结构成分,但是由于其顽固性,这种天然物质的很大一部分被浪费了。该小组的特征是来自生物质富裕栖息地的微生物群落,目的是进一步使其用于工业应用的木质纤维素分解能力。土壤微生物组。土壤微生物组重生主要是细菌,古细菌,病毒,真菌,生物和其他小真核生物,例如硅藻。土壤微生物通过分解土壤有机物并转化重要的养分来确定农业生态系统的生产率,从而在碳和养分循环中起关键作用。此外,尽管它们在粮食安全和气候变化中的重要性,但大多数土壤微生物在很大程度上都没有表征。废水处理和去除污染物,重点是生物学过程(例如有氧颗粒状污泥反应器)或通过吸附或膜操作去除顽固化合物。
人类的遗传构成实际上是相同的,但是我们DNA的小差异引起了人口的巨大表型多样性。相比之下,人类微生物组的元基因组(居住在我们体内的微生物的总DNA含量)的变化更大,其中只有三分之一的成分基因在大多数健康个体中发现。了解“健康微生物组”中的这种变异性是微生物组研究的主要挑战,至少可以追溯到1960年代,继续通过人类微生物组项目及以后。对支持健康的必要和足够的微生物组特征进行分类,以及在健康人群中这些特征的正常范围,是识别和纠正与疾病有关的微生物构型的重要第一步。朝向这一目标,一些人口规模的研究记录了通常在健康人群的微生物中观察到的分类学组成和功能潜力的范围和多样性,以及可能的驱动因素,例如地理,饮食和生活方式。在这里,我们回顾了出现的“健康微生物组”的几个定义,当前对健康微生物多样性范围的理解以及分子功能的表征以及未来要解决的生态疗法的差距。
微生物组是一个复杂的生态系统,根据年龄,遗传学,饮食,生活方式和环境因素等不同因素,在人群和多样性方面有所不同[2]。研究表明,微生物组平衡(称为营养不良)会导致免疫失调,从而导致各种自身免疫性疾病(例如炎症性肠病(IBD))的发展[3]。此外,这项研究已经建立了肠道菌群与肠外疾病(如多发性硬化症(MS),纤维肌痛,关节炎和精神障碍)之间的联系。但是,一些专家认为,当前的证据体不足以确定建立肠道健康与肠外疾病之间的因果关系[2]。然而,对小鼠的研究表明,肠道菌群组成的变化可以调节细胞因子的产生和T细胞激活,这会影响眼睛中自身免疫性疾病的发展[4]。
微生物组在生态系统功能中具有非常重要的作用,并执行关键的56个功能,以支持行星健康,包括营养循环,气候调节和57水过滤。微生物组也与较高的生物(例如58人,其他动物,植物和昆虫)密切相关,并为其59宿主的健康而发挥关键作用。尽管我们开始了解不同系统中的微生物组是60互连,但对微生物组传递和连通性的了解仍然很差。在61本综述中,我们显示了微生物组如何在不同的62个环境之间连接并传输,并讨论了这些连接的功能后果。微生物组63转移发生在非生物之间和内部(例如空气,土壤,水)和生物环境之间,并且可以通过不同的向量(例如昆虫或食物)或直接相互作用来介导64。65此类转移过程还可能包括病原体或抗生素66抗性基因的传播。但是,在这里,我们强调了一个事实,即微生物组的传播可能对行星和人类健康产生67个积极影响,在这种情况下,传播的微生物可能有68种提供新功能可能对生态系统的适应很重要。69
颠覆性的科学发现和技术进步有望降低人类在长期太空任务中的健康风险和表现。它通过为 NASA 以外的社区提供科学内容和机会来了解人类深空探索挑战来实现这一目标。虚拟会议吸引了广泛而多样的受众,探讨如何应用特定领域的知识来帮助保障宇航员在前往火星的途中的健康。Sarkis Mazmanian 博士(加州理工学院)和 Stephen Mayo 博士(加州理工学院 TRISH 负责人)制定了会议议程并招募了发言人。本报告总结了演讲并提供了太空飞行应用的背景。所有演讲都已录像并存档在 TRISH 网站上,可在此处找到。太空飞行会给人体带来许多压力,包括但不限于暴露于太空辐射、在封闭和不变的环境中物理隔离、仅限于预先准备的食物的饮食和
人类肠道微生物组在神经,免疫和内分泌系统的成熟中起着重要作用。来自动物模型的研究数据表明,肠道菌群在包括迷走神经在内的精心信号通路网络中与宿主的大脑进行通信。微生物组的影响力扩展到其宿主的行为和社会发展。作为一种社会物种,人类与他人交流的能力对于其生存和生活质量至关重要。当前的研究探讨了肠道微生物群的发育影响以及如何利用这些肠道途径来减轻与各种神经发育和精神疾病相关的社会症状。动物模型中的一种有趣的研究素食以益生菌治疗为中心,这导致下游增加内源性催产素的循环,这是一种与社交性相关的神经肽激素。进一步的研究可能会导致人类的治疗应用,尤其是在其生命的早期阶段。
背景:根据最近的研究,动脉粥样硬化和肠道菌群是相关的。尽管如此,已经发现肠道菌群随着研究而有所不同,其功能仍在争论中,并且这种关系并未被证明是因果关系。因此,我们的研究旨在在不同的分类学水平上识别关键的肠道菌群分类单元(GM分类单元),即门,阶级,秩序,秩序,家庭和属,以研究与动脉粥样硬化的任何潜在因果关系。方法:我们采用了来自肠道微生物群的Mibiogen联盟中的汇总数据来进行复杂的两样本Mendelian随机分析(MR)分析。有关动脉粥样硬化统计的相关信息是从Finngen Consortium R8出版物中获取的。评估因果关系,利用的主分析技术是反向方差加权(IVW)方法。补充IVW,采用了其他MR方法,包括加权中位数,MR-EGGER,加权方法和简单模式。敏感性分析涉及Cochrane的Q检验,MR-Egger截距测试,MR-Presso全球测试和剩余分析的应用。结果:最后,在对动脉粥样硬化的211 gm分类单元进行了211 gm分类单元的风险进行MR研究之后,我们发现了20个名义联系和一个牢固的因果关系。Firmicutes(门ID:1672)(几率(OR)= 0.852(0.763,0.950),p = 0.004)仍然与较低的冠状动脉粥样硬化发生率有关,即使在Bonferroni校正后,也是如此。这项研究可以通过关注肠道菌群来提供有关动脉粥样硬化的治疗目标的新见解。结论:基于发现的数据,确定菲洛姆·菲尼科特斯与冠状动脉粥样硬化的发生率降低表现出因果关系。
在所有地理区域中,某些DNA Genotek产品可能不可用。†Omnigene TM•肠道(OM-200)标记为体外诊断使用,在美国不可出售。Omnigene TM•肠道(OMR-200),Omnigene TM•口服(OMR-110/120),Omnigene TM•阴道,综合TM•Saliva(OMR-610)和Omnigene TM•皮肤仅用于研究,不适用于诊断过程。Omnigene,Omnimet和DNA Genotek是DNA Genotek Inc.专利的商标(www.dnagenotek.com/legalnotices)©2023 DNA Genotek Inc.是Orasure Technologies,Inc.,Inc.,Inc。,保留所有权利。MK-01281第3/2023-01号
肠道 - 微生物脑轴轴在控制系统性代谢和稳态中起着至关重要的作用。最近的研究表明,饮食习惯和养分可以通过影响各种因素(包括微生物组组成,微生物产物释放,胃肠道信号分子和神经递质)来影响免疫系统和炎症状态。此外,肠道微生物组通过改变关键的脑发射器,循环细胞因子和可以穿越血脑屏障的短链脂肪酸来影响大脑。免疫原理是一门新生的学科,研究了饮食,营养状况,免疫系统,炎症,感染,伤害和治愈之间的关系。本综述探讨了营养与免疫系统之间的关系,集中于免疫和免疫营养素,营养,免疫和微生物组之间的联系,微生物群 - 脑脑的交流以及潜在的营养干预措施以改善神经疾病。手稿提供了营养与免疫系统之间复杂相互作用的全面概述,突出了我们饮食会影响我们的健康和福祉的许多方式,尤其是在神经炎症和神经退行性疾病的背景下。