通过纳米和微技术(量子点和微流体)的融合,我们创建了一个能够对人类血清样本中的传染性病原体进行多重、高通量分析的诊断系统。作为概念验证,我们展示了能够检测全球最流行的血液传播传染病(即乙型肝炎、丙型肝炎和 HIV)血清生物标志物的能力,样本量少(<100 µ L),速度快(<1 小时),灵敏度比目前可用的 FDA 批准方法高 50 倍。我们进一步展示了同时检测血清中多种生物标志物的精确度,交叉反应性最小。该设备可以进一步发展成为便携式手持式即时诊断系统,这将代表发达国家和发展中国家在检测、监测、治疗和预防传染病传播方面的重大进步。
摘要:自20世纪80年代以来,利用微流体技术生产简单(微球)和核壳(微胶囊)聚合物微粒(通常称为微胶囊化)一直是多项研究的重点。由于其特性可控、可调,且产率可达100%,因此该工艺快速、经济、高效。然而,其绿色环保性、可持续性和可扩展性仍不明确,需要加强该领域的认知和教育。微流体技术生产工艺的可持续性可以基于三大支柱实现/讨论:(i) 废物产生,(ii) 所用溶剂,以及 (iii) 原材料。另一方面,尽管已有多篇论文报道了这些工艺的放大,即并行设置数百或数千个微流控芯片,但据我们所知,尚未探讨这种放大工艺的可持续性。本意见书强调了微流体封装工艺的优势、根据上述支柱 (i-iii) 的绿色性以及在保持其可持续性的同时扩大其规模所需的考虑因素。
自然和我们的日常生活都被微塑料和纳米塑料所包围。他们的存在对环境和生物的健康有潜在的风险。尽管塑料在工业领域的优势(例如低成本和多功能性)最初是发明的,但它们的降解会导致不容易监测或检测的小颗粒,并且可以渗透到体内,而在本质上可能会持续数百年。他们的检测,识别和分析对于确定所有人的危险水平至关重要。全球塑料产量的兴起导致环境中微塑料和纳米塑料的患病率不断增加。缺乏标准化的处理方法使管理环境影响的努力变得复杂。目前的状态以及未来几年的预测似乎黯淡,促使科学家和立法者加强了开发和实施更好的解决方案的努力。
摘要简介:由于生物医学的最新进展以及对疾病分子机制的越来越多的理解,医疗保健方法倾向于预防和个性化医学。因此,近几十年来,跨学科技术(例如微流体系统)的利用具有显着增加,以提供更准确的高通量诊断/治疗方法。方法:在本文中,我们将回顾微流体技术创新的摘要,以改善个性化的生物分子诊断,药物筛查和治疗策略。结果:微流体系统通过为流体流动,细胞的三维生长以及分子实验的小型化是在健康和治疗领域的有用工具。这些条件使潜力能够进行类似的研究;疾病建模,药物筛查和提高诊断方法的准确性。结论:由于其能够以较小的样本量,降低成本,高分辨率和自动化进行诊断测试,因此微流体设备已成为有前途的护理(POC)和个性化药物工具。
抽象的微流体学是一种以微米尺度操纵流体的技术,已成为医疗保健中的一种变革性工具,尤其是在护理点(POC)测试中。微流体系统的整合已实现了快速诊断,样本需求最少和高通量测试,从而提供了临床结果的显着改善。本评论重点介绍了微流体学的基本原理,3D打印等制造技术的进步以及它们在检测和管理传染性和慢性疾病中的应用。尽管有希望,但基于微流体的POC设备的广泛采用仍面临挑战,包括可扩展性,成本效益和监管障碍。未来的方向表明,个性化医学,数字健康和混合诊断平台的潜在突破。微流体仍然是一项有前途的技术,可以在全球范围内弥合医疗保健差距,尤其是在资源受限的环境中。关键字:微流体,护理点测试,实验室芯片,诊断,制造技术,3D打印。
他的研究兴趣包括开发新的合成生物学工具,以及工程新颖的定制遗传回路,用于感应和信息处理多个细胞和环境信号,并在不同领域的应用,例如,生物传感,生物制造和生物治疗措施。
摘要简介:由于生物医学的最新进展和对疾病分子机制的日益了解,医疗保健方法趋向于预防和个性化医疗。因此,近几十年来,微流体系统等跨学科技术的利用显着增加,以提供更准确的高通量诊断/治疗方法。方法:在本文中,我们将回顾微流体技术的创新摘要,以改进个性化的生物分子诊断,药物筛选和治疗策略。结果:微流体系统通过提供可控的流体流动空间,细胞的三维生长和分子实验的小型化,成为个性化健康和治疗领域的有用工具。这些条件使得开展以下研究成为可能:疾病建模,药物筛选和提高诊断方法的准确性。结论:微流体设备由于能够以小样本量进行诊断测试、降低成本、实现高分辨率和自动化,已成为有前途的即时诊断 (POC) 和个性化医疗仪器。
I.执行摘要财团:Corvallis Microfluidics Technology Hub(COLMIC)www.cormictechhub.org关键技术焦点区域(KTFAS):高性能计算,高级能源技术,高级材料,高级材料和制造业,生物技术。公共技术平台:微流体,其中硅或其他材料中的微观通道携带少量液体用于热分布,分配,混合或分析。地理边界:科瓦利斯,俄勒冈州的小城市统计区(MSA)与MSA合作伙伴(波特兰 - 南通 - 希尔斯伯勒,奥尔 - 瓦勒;塞勒姆;或; eugene-springfield,或; eugene-springfield,or and; and and; and and and and and and and and and and and and and and; and; eugene-springfield,and and and and and and and and and; eugene-springfield,and and and and and and obaly MSA,奥尔巴尼 - 黎巴嫩,奥尔巴尼 - 黎巴嫩和美国土著社区。为什么要微流体?微流体将推动生长并创造半导体冷却(降低温度并提高综合电路的性能),连续流动处理(化学合成以降低成本,可持续提高新材料)和生物技术(以革新诊断,治疗和药物开发革命))。为什么Corvallis?四家大型区域公司(HP,英特尔,NVIDIA,Thermo Fisher Scientific)加入了Cormic,因为微流体对其期货至关重要。此外,俄勒冈州的硅森林围绕着科瓦利斯(Corvallis),波特兰是美国半导体制造业中最集中的基因座。俄勒冈州立大学(OSU),俄勒冈大学(UO)和俄勒冈州健康与科学大学(OHSU)的联合学术企业将促进专业知识,创新,初创企业和多样化的劳动力。为什么现在?谁会受益?半导体行业正在突然过渡到综合电路(ICS)的液体冷却。连续流动加工(CFP)正在取代化学和制药行业中的分批加工,从而加速发现具有相关经济和环境优势的新材料。生命科学研究人员已经证明了许多微流体设备,这些设备预示了诊断和治疗方面的革命性进步。但是,商业化需要进一步的创新。我们估计,到2033年,科尔米奇将创造5,000至12,000个工作岗位,在农村服务,服务不足的俄勒冈地区的就业率很大,女性和有色人种的就业率低于平均水平。
• SonyDADC 萨尔茨堡(制造) • Johnson and Johnson 贝尔斯威克/新不伦瑞克(研发/全球总部) • Philips 埃因霍温(研发) • IMT 瑞士(生产) • ST Microelectronics 米兰(研发) • National Panasonic 大阪(研发) • SIMTech 新加坡(研发/生产)鲁赫(研发) • Uni Twente/Micronit 恩斯赫德(研发) • UCSB/Stanford • UCSD/Illumina(总部) • Biomerieux(研发) • 中国科学院(中国) • 加州大学伯克利分校
在过去的二十年中,微流体学取得了长足的进步,现在是时候对 2005 年出版的《微流体学导论》第一版进行认真的更新了。事实上,第二版不仅仅是一次更新。与第一版相比,它保留了相同的结构、相同的精神、相同的尝试,尽可能从物理角度深入、简单地解释事物,但它不能简化为更新。当前版本是对第一版的完全重写,并借鉴了过去二十年在该领域收集的大量信息。二十年来收集了如此多的信息。对该领域的愿景进行了如此多的修订。20 世纪 90 年代看似不可能的事情,十年后催生了一个重要的行业。这就是下一代测序 (NGS) 的情况。看似革命性的东西最终却令人失望。微流控技术的历史充满了梦想成真和有吸引力的证据被证明是错误的。让我们回到世纪之交。当时,微流控市场(即没有喷墨打印)规模很小,尽管经常有人宣称微流控技术将彻底改变二十一世纪,但人们对该技术是否有潜力在市场上站稳脚跟仍持怀疑态度。常识导致了这样一个理论,即在工业规模下,在没有泄漏、堵塞、气泡或不受控制的吸附的情况下,驱动流体通过微小通道是不可能的,而事实上,这是错误的。相反的观点认为,创建一个复杂、功能齐全的微流体设备很简单,这是不现实的。尽管如此,成功的微流体产品还是出现了,与此同时,该技术渗透到了越来越多的新领域。市场以两位数的速度稳步增长,如今已达到 170 亿美元。目前,每年售出数亿台设备。例如,每年有 120 万个用于基因测序的 Illumina 微流体流动池出货。与此同时,毛细现象、润湿、滑移和纳米流体传输等基本现象得到了更好的理解,或者在许多令人费解的情况下,只是得到了理解。多年来,该领域的早期愿景基于与微电子学的严格类比,逐渐转向一种新范式,其中微流体工具箱不再局限于 MOS-FET 替代品,而是采用了更广泛的材料和机制。
