在本文中,我们讨论了3个示例,其中微透镜可以成为解决光纤阵列和光子积分电路(PIC)之间耦合挑战的有用工具。这项工作中使用的(阵列)通过光孔反射方法实现了(可以单层集成在PIC的背面,或者可以单独地集成在PIC的后侧,或者可以在PIC的设备侧安装。第一个示例涉及在感应图片的背面蚀刻的硅微透镜(在C波段中运行),目的是用于放松的对齐公差,并使设备侧没有接口纤维。第二个示例涉及实施4毫米长的工作距离扩展的梁(30 µm模式场直径,C型波段)界面,用于电信/数据量应用程序,该应用程序也极大地放松了PIC上的GRATINAL耦合器和A纤维阵列之间的横向和纵向对齐公差。最终示例涉及在这个长的工作距离扩展的梁界面中的隔离器的集成。隔离器堆栈由偏振器(0.55 mm厚),非重生法拉第旋转器(485 µm厚的薄膜闩锁Faraday旋转器)和半波板(HWP,91 µm石英)组成。我们获得了宽带操作,表现出非常低的(1至1.5 dB之间)的插入损失和良好的灭绝比(17至20 dB之间)C波段(约1550 nm)
在第一部分中,我们描述了我们的方法。我们从标准微电子 CAD 软件中的像素布局描述开始,然后在光学射线追踪软件上生成三维模型。该光学模型旨在尽可能真实,同时考虑到像素所有组件的几何形状和材料的光学特性。还开发了一种特定的射线源来模拟真实条件下的像素照明(物镜后面)。在光学模拟之后,结果被传输到另一个软件以进行更方便的后处理,其中我们使用由角度响应模拟结果与测量值的拟合确定的加权表面作为感光区域。利用这个表面,我们计算基板内的射线密度以评估传感器的模拟输出信号。
摘要:我们引入了一个灵活的显微镜全纤维 - 光学拉曼探针,该探针可以嵌入设备中以启用Operando的原位光谱。便捷的探针由嵌套的反无核核纤维与集成的高折射率钛酸稀盐Microlens组成。泵激光785 nm激发和近红外收集是独立表征的,表明了全宽度最大最大1.1μm的激发点。由于这比有效的收集区小得多,因此对收集的拉曼散射的影响最大。我们的表征方案提供了适合使用纤维类型和微球的各种组合来测试这些纤维探针功效的合适方案。在表面增强的拉曼光谱样品和铜电池电极上进行的拉曼测量结果证明了纤维探针的生存能力,可以替代散装视神经拉曼显微镜,从而与10个目标相当地收集,从而为在诸如岩石电池监控等应用中的Operando Raman研究铺平了道路。关键字:空心核纤维,拉曼,Microlens,原位,纤维探针,光子纳米夹■简介
本文报道了一种基于软辊冲压工艺的紫外固化聚合物微透镜阵列快速制造创新技术。在该方法中,通过在微透镜阵列的塑料母版中浇铸聚二甲基硅氧烷 (PDMS) 预聚物来制造具有微透镜阵列腔体的软辊。塑料母版采用气体辅助热压法在带有微孔阵列的硅模具上对聚碳酸酯 (PC) 薄膜进行聚碳酸酯 (PC) 薄膜压印来制备。软辊上的微透镜阵列腔首先用液态紫外固化聚合物填充。辊在移动的透明基板上滚动和冲压。形成微透镜阵列图案。同时,基板上的图案在穿过滚动区时被紫外光辐射固化。在本研究中,设计、建造和测试了具有紫外曝光能力的辊压设备。测量、分析了复制的微透镜阵列的复制质量、表面粗糙度和光学特性,结果令人满意。这项研究展示了软辊冲压在连续快速批量生产中的潜力。 2006 Elsevier BV 保留所有权利。
光学扫描全息图(OSH)可以应用于3D荧光成像。但是,由于需要相位变速器,2D机械扫描仪和干涉仪,OSH的光学设置变得复杂。尽管一动不动的光学扫描全息图(MOSH)可以提出问题,但尚未实现定量相成像(QPI),因为MOSH只能获得不可接受的全息图。如果实现了MOSH中的QPI,则可以将MOSH应用于各种应用程序。在这封信中提出了基于MOSH的QPI(MOSH-QPI)。此外,还提供了对OSH连贯模式的简单描述。在原则实验中,使用空间分开的相移技术来减少测量数量。通过测量Microlens阵列的相分布来确认MOSH-QPI的可行性。MOSH-QPI也用于测量实际样品,并将其结果与使用Mach-Zehnder干扰物的常规结果进行比较。
光场显微镜 (LFM) 是对活体动物脑内神经元活动进行光学成像的关键技术。然而,目前还没有能够提供统一模拟和优化过程的计算框架。本文提出并展示了一种用于 LFM 系统的计算模拟和优化框架。所提出的框架由三个主要模块组成:前向模型、后向模型和优化器。本文全面介绍了每个模块背后的理论背景和实现细节。所开发的计算框架的期望是让非计算方面的用户仍然可以快速原型化并进一步优化他们的 LFM 光学设计和重建模型。此外,本文还对当前 LFM 系统的分类、微透镜阵列优化方法以及基于模型可微性的优化流程做出了贡献。
伊贺曾担任日本研究所图书馆馆长和 P&I 微系统研究中心主任,现已退休,现为日本东京工业大学的名誉教授。他在东京工业大学获得工学博士学位,并加入东京工业大学的 P&I 实验室,最终成为一名正教授和山崎贞一讲席教授。伊贺于 1977 年首次提出了一种独特的半导体激光器,即腔面垂直于晶面的垂直腔面发射激光器 (VCSEL)。他是微光学的积极倡导者,利用梯度折射率微透镜阵列,并一直致力于实现与面发射激光器相结合的二维阵列光学装置的梦想。他是多部书籍的作者,包括《微光学基础》、《激光光学基础》、《光纤通信简介》、《半导体激光器工艺技术》和《面发射激光器》。
摘要:要增加制造吞吐量并降低硅光子包装的成本,需要采取耐受的方法来简化纤维到芯片耦合的过程。在这里,我们通过单层在芯片的背面单层整合微液体来证明硅光子光子学的扩展耐亮束背面耦合界面(在O波段中)。从通过散装硅底物的Te模式光栅扩展衍射的光束后,将横梁准直借助微粒,从而提高了对侧向和纵向错位的偶联耐受性。在1310 nm的波长下,证明了膨胀的梁直径为32 µm,横向A±7 µm和A±0.6°角纤维1-DB对齐耐受性。另外,当从微丝耦合到热膨胀的核心单模纤维中时,将获得耦合效率0.2 dB的纵向比对耐受性。
可靠地创建大规模和高度比率的Microlens阵列1-3可能会影响多个研究和量子技术的几个领域。微晶体来使垂直腔发射激光器(VCSEL)阵列的输出4,5和量子发射器6-9,以通过提高与设备活动区域10-12的耦合并提高互连接器的效率13 – CHIPS的效率来提高图像的灵敏度。在量子技术中,微米尺度的固体沉浸式镜片(SILS)在从单个固态量子发射器中的单个光子16-18中的单个光子中发挥了重要作用。在固态矩阵中,通常会受到全部内部反应的限制,这将大部分发射捕获在高索引培养基中。通过以大角度去除折射,SILS可以将收集效率提高到10-20,例如,与钻石19中与单氮胶菌(NV)中心相关的自旋/光子界面所示。- 床上用品NV中心具有壮观的突破,例如其电子自旋18的单发射击读数,第一个漏洞的铃铛测试20和实现了远程固态量子设备的多节点Quantum网络21,22的多节点Quantum网络。最近,该技术还扩展到具有更好成熟的其他材料中的类似量子发射器,例如碳化硅23-25。
提出并演示了一种通过微透镜阵列 (MLA) 的光场投影进行 3D 光刻的方法。利用 MLA,我们可以通过开发的聚焦方案将来自空间光调制器 (SLM) 的光传送到 3D 空间中的任意位置,即体素。体素位置和 SLM 像素位置之间的映射函数可以通过光线追踪一一确定。基于正确的映射函数,可以通过 SLM 和 MLA 在 3D 空间中重建计算机设计的 3D 虚拟物体。然后可以对投影的 3D 虚拟物体进行光学压缩并将其传送到光刻胶层进行 3D 光刻。利用适当的近紫外光,可以在光刻胶层内的不同深度构建 3D 微结构。这种 3D 光刻方法可用于在任意位置进行高速 3D 图案化。我们预计,在提出的光场 3D 投影/光刻方案中采用飞秒光源和相关的多光子固化工艺时,也可以实现高精度 3D 图案化。多光子聚合可以防止在到达设计的焦点体素之前沿光路对区域进行非自愿图案化,如我们在单光子演示中所观察到的那样。