7318.15.43 other bolts with Hexagon heads of iron or stainless stell ends, screw students and screw students), (excluding that imported from originating in: Afghanistan, Albania, Algeria, Angoa, and Babuda, Armenia, Azerbaijan, Bangladesh, Bahrain, Benin, Brunei Darussalam, Bolivia, Botswana, Brazil, Bulgaria, Burundi, Cambodia, Cameroon, Cape verde, Central African Republic, Chad, Chile, Colombia, Colombia, Congo (republic of the), Costa Rica, Côte djibouti, Dominican republic, ecuador, egyp t (arab republic of), el salvador, eswatiin, equatorial guinea, ethiopia, gabon, gambia, ghana, guatemala, guatemala- bissau, haiti, indonesia, iran (islamic Ublic of), Jamaica, Jordan, Kazakhstan, Kenya, Koorea (Democratic People), Kyrgyzstan Republic, Kuwait, Lao People's Democratic Republic, Latvia, Lebanon, Liberia, Libya, Lithuiania, Madagascar, Madawi, Mali, Marshall Islands, Mauritania, Mauritius, Mexico, Moldova (republic of), Montenegro, O, Mozambique, Myanmar, Namibia, Nepal, Niger, North Macedonia, Oman, Palau, Paanama, Paraguay, Peru, Philippines, Romeia, Russian Federation, (k ingdom of), Saint Kitts and Nevis, Saint Vincent and the Great, Samoa, São Tomé and Principe, Samoa, Serbia, Senegal, Senegal, Sierra Leone, Singapore, South suden, Sri Lanka, Sudane,, Syrian Arab Republic, Tanzania (United Republic of), Togo, Tridad and Tobago, Turkmenistan, Tuval, Uganda, Uruguay, Uzbekistan, Uzbekistan, Vanuatu, Venezuela Bolivarian Republic of), Vietnam,West Bank and Gaza (State of Palestine), Yemen, Zambia, Zimbabwe)
Agersnap,S.,Larsen,W.B.,Knudsen,S.W.,Strand,D.,Thomsen,P.F.,Hesselsøe,M。Etal。(2017)。使用淡水样品中的环境DNA对贵族,信号和狭窄的小龙虾进行监测。PLOS ONE,12(6),E0179261。https://doi.org/10.1371/journal.pone。0179261 Andruszkiewicz,E.A.,Sassoubre,L.M。&Boehm,A.B。(2017)。海洋鱼环境DNA的持久性和阳光的影响。PLOS ONE,12(9),E0185043。https://doi.org/10.1371/journal.pone.0185043 Barnes,M.A。 &Turner,C.R。 (2016)。 环境DNA的生态及其对保护遗传学的影响。 保护遗传学,17(1),1 - 17。https://doi.org/10.1007/s10592-015-015-015-0775-4 Boulanger,E.,Loiseau,N. (2021)。 环境DNA元法编码揭示并解开地中海海洋储量中的生物多样性保护悖论。 皇家学会的会议记录B,288(1949),20210112。https:// doi。 org/10.1098/rspB.2021.0112 Boussarie,G.,Bakker,J.,Wangensteen,O.S。,Mariani,S.,Bonnin,L.,Juhel,J.B.等。 (2018)。 环境DNA照亮了鲨鱼的黑暗多样性。 科学进步,4(5),EAAP9661。 https://doi.org/ 10.1126/sciadv.aap9661 Budd,A.M.,Cooper,M.K.,Le Port,A.,Schils,T. 等。 (2021)。 使用环境DNA在五十年内,首次检测了密克罗尼西亚关岛的急性濒危扇形的锤头鲨(Sphyrna Lewini)。https://doi.org/10.1371/journal.pone.0185043 Barnes,M.A。&Turner,C.R。(2016)。环境DNA的生态及其对保护遗传学的影响。保护遗传学,17(1),1 - 17。https://doi.org/10.1007/s10592-015-015-015-0775-4 Boulanger,E.,Loiseau,N.(2021)。环境DNA元法编码揭示并解开地中海海洋储量中的生物多样性保护悖论。皇家学会的会议记录B,288(1949),20210112。https:// doi。org/10.1098/rspB.2021.0112 Boussarie,G.,Bakker,J.,Wangensteen,O.S。,Mariani,S.,Bonnin,L.,Juhel,J.B.等。(2018)。环境DNA照亮了鲨鱼的黑暗多样性。科学进步,4(5),EAAP9661。https://doi.org/ 10.1126/sciadv.aap9661 Budd,A.M.,Cooper,M.K.,Le Port,A.,Schils,T.等。(2021)。使用环境DNA在五十年内,首次检测了密克罗尼西亚关岛的急性濒危扇形的锤头鲨(Sphyrna Lewini)。生态指标,127,107649。https://doi.org/10.1016/j.ecolind.2021.107649 Bustin,S.A.(2009)。MIQE指南:最少发表定量实时PCR实验的信息。临床化学,55(4),611 - 622。https://doi.org/10.1373/clinchem.2008.112797 Caza-Allard,I.&Bernatchez,L。(2022)。生物和非生物因素对鱼环境DNA的产生和降解的影响:一种实验评估。环境DNA,4(2),453 - 468。https://doi.org/10.1002/edn3.266 Collins,R.A.,Wangensteen,O.S.,O.S.,O'Gorman,E.J. &Genner,M.J。(2018)。海洋中环境DNA的持久性
Agersnap, S.、Larsen, WB、Knudsen, SW、Strand, D.、Thomsen, PF、Hesselsøe, M. 等人 (2017)。使用淡水样本中的环境 DNA 监测贵重、信号和窄爪龙虾。PLoS ONE,12(6),e0179261。https://doi.org/10.1371/journal.pone。0179261 Andruszkiewicz, EA、Sassoubre, LM 和 Boehm, AB (2017)。海洋鱼类环境 DNA 的持久性和阳光的影响。PLoS ONE,12(9),e0185043。https://doi.org/10.1371/journal.pone.0185043 Barnes, MA 和 Turner, CR (2016)。环境 DNA 的生态学及其对保护遗传学的影响。保护遗传学,17(1),1 – 17。https://doi.org/10.1007/s10592-015-0775-4 Boulanger, E.、Loiseau, N.、Valentini, A.、Arnal, V.、Boissery, P.、Dejean, T. 等人 (2021)。环境 DNA 宏条形码揭示并解开了地中海海洋保护区的生物多样性保护悖论。英国皇家学会学报 B,288(1949),20210112。https://doi. org/10.1098/rspb.2021.0112 Boussarie, G.、Bakker, J.、Wangensteen, OS、Mariani, S.、Bonnin, L.、Juhel, JB 等人。 (2018)。环境 DNA 揭示了鲨鱼的黑暗多样性。科学进展,4(5),eaap9661。https://doi.org/ 10.1126/sciadv.aap9661 Budd, AM、Cooper, MK、Le Port, A.、Schils, T.、Mills, MS、Deinhart, ME 等人 (2021)。利用环境 DNA 五十年来首次在密克罗尼西亚关岛发现极度濒危的路氏锤头鲨(Sphyrna lewini)。生态指标,127,107649。https://doi.org/10.1016/j.ecolind.2021.107649 Bustin, SA、Benes, V.、Garson, JA、Hellemans, J.、Huggett, J.、Kubista, M. 等人 (2009)。 MIQE 指南:定量实时 PCR 实验发表的最低限度信息。临床化学,55(4),611 – 622。https://doi.org/10.1373/clinchem.2008.112797 Caza-Allard, I.、Laporte, M.、Côté, G.、April, J. 和 Bernatchez, L. (2022)。生物和非生物因素对鱼类环境 DNA 产生和降解的影响:实验评估。环境 DNA,4(2),453 – 468。https://doi.org/10.1002/edn3.266 Collins, RA、Wangensteen, OS、O'Gorman, EJ、Mariani, S.、Sims, DW 和 Genner, MJ (2018)。海洋中环境 DNA 的持久性
III. 背景 卡瓦胡椒 ( Piper methysticum G. Forster ) 是一种多年生灌木,属于胡椒科,原产于波利尼西亚、密克罗尼西亚和美拉尼西亚地区。卡瓦胡椒的一些常用名称包括醉人胡椒、ava、ava 胡椒、awa、卡瓦胡椒、卡瓦根、kawa、kawa kawa、kew、rauschpfeffer、sakau、tonga、wurzelstock 和 yagona。几个世纪以来,卡瓦胡椒饮料一直在南太平洋的仪式和社交活动中使用。卡瓦胡椒饮料由移民引入新喀里多尼亚、所罗门群岛、基里巴斯和新西兰等地。卡瓦胡椒在西方社会很受欢迎,是一种休闲饮料、膳食补充剂,并用于治疗焦虑和失眠的抗焦虑药物。传统上,卡瓦胡椒提取物是将浸软的根茎与冷水或椰奶混合制成的。卡瓦饮料由新鲜或干燥的卡瓦胡椒根制成,具有松弛和精神活性作用,人们饮用后会饮用(Bilia 等人,2002 年)。市售的卡瓦配方主要是乙醇、甲醇或丙酮提取物,标准化为指定的卡瓦内酯含量。尽管有一些科学证据表明卡瓦可用于治疗焦虑症,但由于肝毒性安全问题,自 2002 年以来,多个欧洲市场(法国、瑞士、捷克共和国、西班牙、英国、匈牙利、葡萄牙和德国(截至 2015 年))和加拿大已将卡瓦胡椒撤回或禁止销售。FDA 还在 2002 年发布了消费者咨询和致医疗保健专业人员的信函,表达了对食用卡瓦产品的人肝损伤的担忧(CFSAN,2002 年 3 月 25 日)。然而,目前卡瓦胡椒在美国仍作为膳食补充剂出售,被宣传为可以放松身心,缓解压力、焦虑和紧张,以及治疗失眠和更年期症状,在澳大利亚和新西兰则被用作治疗广泛性焦虑的草药。在澳大利亚,卡瓦胡椒被列入附表 4 目录,并且有监管限制,即从卡瓦根茎和根的水基提取物中提取的卡瓦内酯每天最多不得超过 250 毫克,每个单片药片或胶囊的卡瓦内酯含量不得超过 125 毫克(《治疗用品法》(TGA),2016 年 10 月)。欧洲药品管理局(EMA)草药产品委员会(HMPC)根据现有数据得出结论,欧盟
Agersnap,S.,Larsen,W.B.,Knudsen,S.W.,Strand,D.,Thomsen,P.F.,Hesselsøe,M。Etal。(2017)。使用淡水样品中的环境DNA对贵族,信号和狭窄的小龙虾进行监测。PLOS ONE,12(6),E0179261。https://doi.org/10.1371/journal.pone。0179261 Andruszkiewicz,E.A.,Sassoubre,L.M。&Boehm,A.B。(2017)。海洋鱼环境DNA的持久性和阳光的影响。PLOS ONE,12(9),E0185043。https://doi.org/10.1371/journal.pone.0185043 Barnes,M.A。 &Turner,C.R。 (2016)。 环境DNA的生态及其对保护遗传学的影响。 保护遗传学,17(1),1 - 17。https://doi.org/10.1007/s10592-015-015-015-0775-4 Boulanger,E.,Loiseau,N. (2021)。 环境DNA元法编码揭示并解开地中海海洋储量中的生物多样性保护悖论。 皇家学会的会议记录B,288(1949),20210112。https:// doi。 org/10.1098/rspB.2021.0112 Boussarie,G.,Bakker,J.,Wangensteen,O.S。,Mariani,S.,Bonnin,L.,Juhel,J.B.等。 (2018)。 环境DNA照亮了鲨鱼的黑暗多样性。 科学进步,4(5),EAAP9661。 https://doi.org/ 10.1126/sciadv.aap9661 Budd,A.M.,Cooper,M.K.,Le Port,A.,Schils,T. 等。 (2021)。 使用环境DNA在五十年内,首次检测了密克罗尼西亚关岛的急性濒危扇形的锤头鲨(Sphyrna Lewini)。https://doi.org/10.1371/journal.pone.0185043 Barnes,M.A。&Turner,C.R。(2016)。环境DNA的生态及其对保护遗传学的影响。保护遗传学,17(1),1 - 17。https://doi.org/10.1007/s10592-015-015-015-0775-4 Boulanger,E.,Loiseau,N.(2021)。环境DNA元法编码揭示并解开地中海海洋储量中的生物多样性保护悖论。皇家学会的会议记录B,288(1949),20210112。https:// doi。org/10.1098/rspB.2021.0112 Boussarie,G.,Bakker,J.,Wangensteen,O.S。,Mariani,S.,Bonnin,L.,Juhel,J.B.等。(2018)。环境DNA照亮了鲨鱼的黑暗多样性。科学进步,4(5),EAAP9661。https://doi.org/ 10.1126/sciadv.aap9661 Budd,A.M.,Cooper,M.K.,Le Port,A.,Schils,T.等。(2021)。使用环境DNA在五十年内,首次检测了密克罗尼西亚关岛的急性濒危扇形的锤头鲨(Sphyrna Lewini)。生态指标,127,107649。https://doi.org/10.1016/j.ecolind.2021.107649 Bustin,S.A.(2009)。MIQE指南:最少发表定量实时PCR实验的信息。临床化学,55(4),611 - 622。https://doi.org/10.1373/clinchem.2008.112797 Caza-Allard,I.&Bernatchez,L。(2022)。生物和非生物因素对鱼环境DNA的产生和降解的影响:一种实验评估。环境DNA,4(2),453 - 468。https://doi.org/10.1002/edn3.266 Collins,R.A.,Wangensteen,O.S.,O.S.,O'Gorman,E.J. &Genner,M.J。(2018)。海洋中环境DNA的持久性
结果 到 2022 年,估计将有 8.28 亿(95% 可信区间 [CrI] 757–908)成年人(18 岁及以上)患有糖尿病,比 1990 年增加 6.3 亿(554–713)人。从 1990 年到 2022 年,131 个国家的女性糖尿病年龄标准化患病率增加,155 个国家的男性糖尿病年龄标准化患病率增加,后验概率超过 0.80。增幅最大的是东南亚(如马来西亚)、南亚(如巴基斯坦)、中东和北非(如埃及)和拉丁美洲和加勒比地区(如牙买加、特立尼达和多巴哥和哥斯达黎加)的低收入和中等收入国家。西欧和中欧、撒哈拉以南非洲、东亚和太平洋地区、加拿大和一些太平洋岛国的部分国家在 1990 年发病率已经很高,年龄标准化发病率既没有增加也没有减少,后验概率超过 0.80;日本、西班牙和法国的女性以及瑙鲁的男性发病率下降,后验概率超过 0.80。2022 年全球发病率最低的国家是西欧和东非(男女),日本和加拿大(女性),2022 年全球发病率最高的国家是波利尼西亚和密克罗尼西亚国家、加勒比地区和中东及北非的部分国家以及巴基斯坦和马来西亚。 2022 年,4.45 亿(95% 人群 401-496)30 岁或以上患有糖尿病的成年人未接受治疗(占 30 岁或以上患有糖尿病的成年人的 59%),是 1990 年的 3.5 倍。从 1990 年到 2022 年,118 个国家的女性糖尿病治疗覆盖率增加,98 个国家的男性糖尿病治疗覆盖率增加,后验概率超过 0.80。治疗覆盖率提高最大的是一些中欧和西欧和拉丁美洲国家(墨西哥、哥伦比亚、智利和哥斯达黎加)、加拿大、韩国、俄罗斯、塞舌尔和约旦。撒哈拉以南非洲、加勒比地区、太平洋岛国以及南亚、东南亚和中亚的大多数国家的治疗覆盖率没有增加。2022 年,撒哈拉以南非洲和南亚国家的年龄标准化治疗覆盖率最低,一些非洲国家的治疗覆盖率不到 10%。韩国、许多西方高收入国家以及中欧和东欧(例如波兰、捷克和俄罗斯)、拉丁美洲(例如哥斯达黎加、智利和墨西哥)和中东和北非(例如约旦、卡塔尔和科威特)的一些国家,治疗覆盖率达到55%或更高。
结果 到 2022 年,估计将有 8.28 亿(95% 可信区间 [CrI] 757–908)成年人(18 岁及以上)患有糖尿病,比 1990 年增加 6.3 亿(554–713)人。从 1990 年到 2022 年,131 个国家的女性糖尿病年龄标准化患病率增加,155 个国家的男性糖尿病年龄标准化患病率增加,后验概率超过 0.80。增幅最大的是东南亚(如马来西亚)、南亚(如巴基斯坦)、中东和北非(如埃及)和拉丁美洲和加勒比地区(如牙买加、特立尼达和多巴哥和哥斯达黎加)的低收入和中等收入国家。西欧和中欧、撒哈拉以南非洲、东亚和太平洋地区、加拿大和一些太平洋岛国的部分国家在 1990 年发病率已经很高,年龄标准化发病率既没有增加也没有减少,后验概率超过 0.80;日本、西班牙和法国的女性以及瑙鲁的男性发病率下降,后验概率超过 0.80。2022 年全球发病率最低的国家是西欧和东非(男女),日本和加拿大(女性),2022 年全球发病率最高的国家是波利尼西亚和密克罗尼西亚国家、加勒比地区和中东及北非的部分国家以及巴基斯坦和马来西亚。 2022 年,4.45 亿(95% 人群 401-496)30 岁或以上患有糖尿病的成年人未接受治疗(占 30 岁或以上患有糖尿病的成年人的 59%),是 1990 年的 3.5 倍。从 1990 年到 2022 年,118 个国家的女性糖尿病治疗覆盖率增加,98 个国家的男性糖尿病治疗覆盖率增加,后验概率超过 0.80。治疗覆盖率提高最大的是一些中欧和西欧和拉丁美洲国家(墨西哥、哥伦比亚、智利和哥斯达黎加)、加拿大、韩国、俄罗斯、塞舌尔和约旦。撒哈拉以南非洲、加勒比地区、太平洋岛国以及南亚、东南亚和中亚的大多数国家的治疗覆盖率没有增加。2022 年,撒哈拉以南非洲和南亚国家的年龄标准化治疗覆盖率最低,一些非洲国家的治疗覆盖率不到 10%。韩国、许多西方高收入国家以及中欧和东欧(例如波兰、捷克和俄罗斯)、拉丁美洲(例如哥斯达黎加、智利和墨西哥)和中东和北非(例如约旦、卡塔尔和科威特)的一些国家,治疗覆盖率达到55%或更高。
背景此语句是使用WMO Lead Center进行了远程预测多模型集合的。如果不可用元素预测(例如,对于TC或珊瑚漂白),则可以从LRF的Pacific RCC网络节点获得前景。这些Outlook语句用于NMHSS使用。它们不构成任何国家的正式前景。有关更多信息,请联系您当地的气象办公室。太平洋岛屿气候服务小组和太平洋地区气候中心(RCC)网络节点远程预测,与世界气象组织(WMO)合作,自2015年以来一直在协调PICOF。picof是一个平台,用于讨论即将到来的季节,容量建设的季节性前景(ENSO,TCS,降水,温度和海洋条件),并使NMHSS之间的知识交流以及增强NMHSS和利益相关者之间的关系。picof是共享气候和海洋信息,最佳实践以及有关气候和海洋预测的经验教训及其对生产力严重依赖气候状态的领域的重要机制。picof每年举行两次:在10月的一项面对面会议上,重点是11月至4月,四月的虚拟会议重点是五月至10月。picof-15有来自澳大利亚,库克群岛,斐济,法利西亚,基里巴蒂,马歇尔群岛,麦克罗尼亚(Chuuk and Pohnpei),新喀里多尼亚,新西兰,帕劳,巴布亚新几内亚,新几内尼来自以下组织的代表也参与了:太平洋地区环境计划秘书处(SPREP),世界气象组织(WMO),太平洋社区(SPC),澳大利亚气象局(BOM),美国国家海洋和大气管理局(NOAA),NOAA),米塔尔·苏格兰国家机构(NOAA),新去北极 - 苏格兰国家杂货(NEKAII Interial Instrical Instricition(NOAA)) (APEC)气候中心(APCC)和联合国环境计划(UNEP)。太平洋和太平洋岛NMHS,区域组织和WMO之间的紧密工作关系对于有效警告气候危害至关重要。进一步增强这些关系至关重要,以及NMHSS,其主要利益相关者和社区之间的关系。这些可能是频繁的会议,例如一对一的讨论,集群小组会议和国家气候前景论坛。除了生产国家季节性气候前景外,还需要简化产品和消息传递,尤其是对于农村和偏远社区。部门的影响通常与正常情况相比,较长的干燥或湿湿的效果最常。nmhss应该继续开发针对国家领域量身定制的气候产品,与他们的需求相关,并在可能的传统知识元素中纳入。
诺华公司及其合并附属公司发布以美元计价的合并财务报表。我们根据本年度报告表 20-F(年度报告)第 18 项编制的合并财务报表是根据国际会计准则委员会 (IASB) 发布的国际财务报告准则 (IFRS) 编制的。“第 5 项。经营和财务回顾及前景”,连同我们业务的在研产品和关键开发项目部分(参见“第 4 项。公司信息 - 第 4.B 项。业务概览”),构成瑞士债务法定义的经营和财务回顾(“Lagebericht”)。除非上下文另有要求,本年度报告中的“我们”、“我们的”、“我们”、“诺华”、“集团”、“公司”和类似词语或短语均指诺华股份公司及其合并附属公司。但是,每个集团公司在法律上均独立于所有其他集团公司,并通过其各自的董事会或类似监督机构或其他最高地方管理机构(如适用)独立管理其业务。本年度报告中列出的每位高管都直接向雇用该高管的集团公司的其他高管或该集团公司的董事会汇报。以“®”或“™”标识的产品名称是集团公司不拥有或未授权的商标,是其各自所有者的财产。在本年报中,除非上下文另有要求,所提及的“美元”、“USD”或“$”均指美利坚合众国的法定货币,“CHF”指瑞士法郎,“欧元”或“EUR”指欧盟 27 个成员国的法定货币;所提及的“美国”或“US”均指美利坚合众国,“欧盟”或“EU”均指欧盟及其 27 个成员国,“拉丁美洲”均指中美洲和南美洲(包括加勒比地区),“澳大拉西亚”均指澳大利亚、新西兰、美拉尼西亚、密克罗尼西亚和波利尼西亚;“EC”均指欧盟委员会;“关联公司”均指我们关联公司的员工;“SEC”均指美国证券交易委员会;“FDA”均指美国食品药品监督管理局;所提及的“EMA”指的是欧盟机构欧洲药品管理局,所提及的“CHMP”指的是欧洲药品管理局人用药品委员会;所提及的“ADR”或“ADRs”指的是诺华美国存托凭证,所提及的“ADS”或“ADSs”指的是诺华美国存托股份;所提及的“NYSE”指的是纽约证券交易所,所提及的“SIX”指的是瑞士证券交易所;所提及的“ECN”指的是诺华执行委员会;所提及的“GSK”指的是葛兰素史克公司;所提及的“Roche”指的是罗氏控股公司;所提及的“Gyroscope Therapeutics”指的是 Gyroscope Therapeutics Holdings plc; “AAA” 指的是 Advanced Accelerator Applications S.A.,“Novartis Gene Therapies” 指的是 Novartis Gene Therapies, Inc.,“Endocyte” 指的是 Endocyte, Inc. 所有以斜体显示的产品名称均为集团公司拥有或授权的商标。
诺华股份公司及其合并附属公司公布的合并财务报表以美元计价。我们根据本年度报告表 20-F(年度报告)第 18 项编制的合并财务报表是根据国际会计准则委员会(IASB)颁布的国际财务报告准则(IFRS)编制的。“第 5 项经营和财务回顾及前景”连同我们业务的在研产品和关键开发项目部分(参见“第 4 项公司信息 - 第 4.B 项业务概览”)构成瑞士债务法定义的经营和财务回顾(“Lagebericht”)。除非上下文另有要求,本年度报告中的“我们”、“我们的”、“我们”、“诺华”、“集团”、“公司”和类似词语或短语均指诺华股份公司及其合并附属公司。但是,每个集团公司在法律上独立于所有其他集团公司,并通过各自的董事会或类似的监督机构或其他最高地方管理机构(如适用)独立管理其业务。本年度报告中列出的每位高管都直接向雇用该高管的集团公司的其他高管或该集团公司的董事会汇报。在本年度报告中,“美元”、“USD”或“$”是指美利坚合众国的法定货币,“CHF”是指瑞士法郎,“欧元”或“EUR”是指加入欧盟的 27 个成员国的法定货币;除非上下文另有要求,“美国”或“US”均指美利坚合众国,“欧盟”或“EU”均指欧盟及其 27 个成员国,“拉丁美洲”均指中美洲和南美洲(包括加勒比地区),“澳大拉西亚”均指澳大利亚、新西兰、美拉尼西亚、密克罗尼西亚和波利尼西亚;“EC”均指欧盟委员会;“关联公司”均指我们关联公司的员工;“SEC”均指美国证券交易委员会;“FDA”均指美国食品药品管理局;“EMA”均指欧盟机构欧洲药品管理局;“CHMP”均指欧洲药品管理局人用药品委员会;所提及的“ADR”或“ADRs”指的是诺华美国存托凭证,所提及的“ADS”或“ADSs”指的是诺华美国存托股票;所提及的“NYSE”指的是纽约证券交易所,所提及的“SIX”指的是瑞士证券交易所;所提及的“ECN”指的是诺华执行委员会;所提及的“GSK”指的是葛兰素史克公司,所提及的“AAA”指的是 Advanced Accelerator Applications SA,所提及的“Novartis Gene Therapies”指的是诺华基因治疗公司。(原名 AveXis),且“Endocyte”指 Endocyte, Inc. 所有以斜体显示的产品名称均为集团公司所有或授权的商标。标有“®”或“™”的产品名称不是集团公司所有或授权的商标,而是其各自所有者的财产。