行为。大多数动力学研究都是在纯缓冲液中进行的,因为这类研究的标准技术是基于表面等离子体共振 (SPR) 测量的,而血浆蛋白的非特异性结合会扭曲高浓度 (> 1%) 血清样品的动力学数据 [ 1 ];因此,目前还无法在生物基质中进行详细的动力学研究。微尺度热泳动 [ 2 ] 和高效亲和色谱技术 [ 3 ] 已用于药物和血清蛋白之间的分子相互作用研究,并已证明其在获取平衡常数 (例如,K d:解离常数) 方面的有效性,尽管它们不能实现实时相互作用观察,也不能提供动力学信息,例如反应速率常数。
材料测试对于在生产周期的各个阶段鉴定陶瓷至关重要——从原材料验证到成品成型部件的特性分析。在本文中,我们重点介绍了几种用于陶瓷化学和结构分析的关键仪器方法:体相和微尺度应用中的 X 射线荧光(分别为 XRF 和 µXRF)、粉末 X 射线衍射 (XRD) 和 X 射线显微镜 (XRM)。XRF 测量提供有关化学和元素组成的信息,可用于定性和定量实验。体相 XRF 方法用于测试原始原料,以验证试剂纯度以及中间产品和最终产品中所需的比例。µXRF 在受限的物理区域内提供类似的信息,允许对零件和表面进行元素映射。XRD 可以识别
摘要:最近,应用于千分尺范围的添加剂制造过程(AM)过程受到宏观综合方法的影响以及数字设计和自由形式制造的吸引力。AM与常规微机械系统(MEMS)制造过程的其他步骤仍在进行中,此外,为此领域的专用设计方法的开发正在开发中。各种各样的AM过程和材料导致有关过程尝试,设置细节和案例研究的大量文档。但是,AM方法的快速和多技术发展将需要对过程的特定优势,限制和局限性进行有组织的分析。本文的目的是对微观尺度上的AM过程提供最新的总体视野,并组织和消除相关的表演,能力和决议。
摘要:成像、高性能计算和人工智能技术的迅猛发展,除了增加了对大量不同数据的访问权之外,还彻底改变了成像在医学中的作用。放射组学被定义为一种高通量特征提取方法,可以解锁隐藏在标准护理医学成像中的微尺度定量数据。放射基因组学被定义为成像和基因组信息之间的联系。在传统和先进的神经肿瘤学图像模式上进行的多项放射组学和放射基因组学研究表明,它们能够区分假进展和真进展,对肿瘤亚组进行分类,并高精度地预测复发、生存和突变状态。在本文中,我们概述了使用人工智能方法进行放射组学和放射基因组学分析的技术步骤,并回顾了目前在成人和儿童神经肿瘤学中的应用。
随着物联网,智能制造和医疗设备的快速发展,对各种应用程序中对微型的,高性能和低功耗的需求不断提高。微电机机械系统(MEMS)是微型设备,它们在显微镜下整合机械和电气组件,通常在1至100微米之间。MEMS已成为一种关键解决方案,从而实现了实时数据监视和反馈,从而增强了系统性能和可靠性。被认为是21世纪的一种变革性技术,MEMS是下一代设备开发不可或缺的一部分。根据Yole Development的市场和技术趋势,MEMS设备的全球市场预计将在2023年至2029年之间经历大幅增长,从136亿美元增加到200亿美元。1这强调了提高有效的MEMS Technolo-
在valpelline单元中,带有玉米岩的含有玉米岩的类型是最引人入胜的类型,但对它们的P-T进化知之甚少。由于对这些岩石的完全理解是由岩石和多尺度结构研究的相互作用引起的,因此提供了一种多学科的方法,结合了定量的微结构和Minero化学数据,提供了不同世代的叠加叶子和阶段的区分。在中微观和显微镜下定义了两个主要变形阶段:第一个(d 1)是一种固态变形,开发了叶面(s 1),保留为同时折叠;第二个(D 2)与主要叶片的发展(S 2)有关,与玉米岩和石榴石生长以及熔体产生有关。区域s 2包裹玉米岩,石榴石和熔体聚集体。通过将生物岩校准的地图和ti-in-in-in-biotite温度计结合在〜700至780°C范围内获得的Cordierite种植阶段的温度。
摘要:成像,高性能计算和人工智能方面的指数技术进步,除了增加获取大量不同数据的访问量外,还彻底改变了成像在医学中的作用。放射素学被定义为一种高次数特征萃取方法,该方法解锁了隐藏在标准的医学成像中的微观定量数据。放射基因组学被定义为成像和基因组学信息之间的联系。对常规和晚期神经肿瘤学图像模态进行的多种放射组学和放射基因组学研究表明,它们有可能从真实进展,对肿瘤亚组进行分类并预测复发,存活和突变状态的潜力从真实进展中进行分类。在本文中,我们概述了使用人工智能方法进行放射组学和放射基因组学分析的技术步骤,并回顾了成人和儿科神经肿瘤学中当前的应用。
深部脑刺激 (DBS) 是一种有效的治疗方法,并为大脑疾病的动态回路结构提供了独到的见解。本综述阐述了我们目前对运动障碍病理生理学及其受 DBS 调节的潜在大脑回路的理解。它提出了帕金森病中病理网络同步模式(如 β 活动(13 – 35 Hz))的原理。我们描述了从微观尺度(包括局部突触活动)到通过调节中观尺度超同步到全脑宏观尺度连接的变化的改变。最后,展望了下一代神经技术临床创新的进展:从术前连接组靶向到反馈控制的闭环自适应 DBS 作为个体化网络特定大脑回路干预措施。
尽管所有这些过程都对电子结构具有一定的影响,但通常将粒子排列固定在干燥步骤中。这意味着,干燥步骤定义了电极孔结构,随后可以通过Cal-Endering进一步压缩。此外,由于在干燥前沿积累,干燥过程对电极的机械完整性产生了很大的影响,因此限制了电极的凝聚力和粘合强度。电导率受导电添加剂的分布的影响,这也容易迁移,并与活性材料接触。这些复杂的过程在微观尺度的干燥过程中发生,尚未完全阐明,因此为优化整体电池性能留出了空间。
1 安徽农业大学人文社会科学学院心理学系,合肥,中国;2 安徽警官职业学院信息管理系,合肥,中国;3 中国科学技术大学人文社会科学学院心理学系,安徽,合肥,中国;4 合肥国家微尺度物质科学研究中心、中国科学技术大学生命科学与医学部、中国科学技术大学第一附属医院放射科,合肥,中国;5 中国科学技术大学先进技术研究院脑疾病物理治疗应用技术中心,合肥,中国;6 上海外国语大学国际商学院脑机智能信息行为教育部和上海市重点实验室,上海,中国