moir e物理学在表征功能材料和物理特性的工程中起着重要作用,从应变驱动的运输现象到超导性。在这里,我们报告了在模型铁电ER(MN,TI)O 3上获得的导电原子力显微镜(CAFM)中Moir E条纹的观察。通过进行系统的研究,对关键实验参数对诸如扫描角度和像素密度等新兴的Moir e Fringes的影响,我们证明,观察到的条纹由于应用的栅格扫描和样本互动性的叠加而产生,并将测量的调节型对电导率进行分类,从而在扫描的Moir e vistanning scanning Moir e效应中分类。我们的发现对于CAFM对Moir E工程材料中当地运输现象的研究至关重要,这为将外在的和固有的Moir E效应区分开提供了一般指南。此外,这些实验提供了一种可能提高灵敏度的途径,通过通过更长期的MOIR E模式在空间分辨率限制下探测电导量的变化来推动局部运输测量的分辨率限制。
样品持有人的主要任务是将样品保持在稳定的位置。它也可以配备功能单元,例如加热器或液体腔室。扫描头用于固定悬臂并将其移到样品上。通常,压电驱动器用作精确的电动机,在X和Y方向上扫描样品。z方向上的运动通常也由压电电动机执行。1扫描头最重要的部分是尖端,该尖端位于小悬臂末端。悬臂大约只有头发宽(0.1毫米),通常由硅或氮化硅制成(Si 3 N 4)。尖端本身通常具有4-30 nm的半径(见图2 a)。四季度光电二极管用作从悬臂背面反射的激光的检测单元(见图2 b)。
高级透视客户端SEM+ EDX 1。拉合尔和盟军校园工程技术大学。rs。700 Rs。 1000/。 2。 教育机构。 rs。 3000/。 rs。 4000/。 3。 商业样本(行业等) rs。 6000/。 rs。 8000/。 •如果SEM之前需要涂层,将向额外的300卢比收取费用。 •Rs。 1000/。 用于SEM样品制备。 •SEM样本分析的费率和其他特殊要求将由委员会/主任决定。700 Rs。1000/。2。教育机构。rs。3000/。rs。4000/。3。商业样本(行业等)rs。6000/。rs。8000/。•如果SEM之前需要涂层,将向额外的300卢比收取费用。•Rs。1000/。用于SEM样品制备。•SEM样本分析的费率和其他特殊要求将由委员会/主任决定。
数字图像的处理不断获得数量和相关性,对数据存储,传输和处理能力的需求不断增加。传输电子显微镜仪器的最新进展,尤其是在检测器技术中,已经推动了各种方式的数据生产。例如,如今,人们可以通过利用直接电子检测器[1]来想象最多生成200tb/hr,需要智能方法来提取科学有意义的信息。尽管在人工智能(AI)和机器学习(ML)方法的帮助下,显微镜数据解释取得了很多进展[1,2],但与增长的数据解释数据量相关的挑战仍然丰富。预计这将进一步加剧原位 /操作测量的气象升高以及数据挖掘,分析和其他计算需求的相关挑战。
自从 80 年代发明以来,扫描探针显微镜 (SPM) 在大学和工业界中就非常流行,用于检查许多不同的样本参数。这是将这项技术更贴近操作员的效果。尽管易用性为不需要太多劳动力的测量提供了可能性,但定量分析仍然是市场上扫描探针显微镜的限制。根据纳米计量组的经验,SPM 仍然可以被视为定量检查热、电和机械表面参数的工具。在这项工作中,我们提出了一个 ARMScope 平台作为多功能 SPM 控制器,它被证明可用于各种应用:从原子分辨率 STM(扫描隧道显微镜)到多共振 KPFM(开尔文探针力显微镜)到商用 SEM(扫描电子显微镜)。
1 ICFO-Institut de Ci`encies Fot`oniques,巴塞罗那科学技术研究所,08860 Castelldefels(巴塞罗那),西班牙 2 米兰理工大学,物理系,20133 米兰,意大利 3 米兰理工大学,电子、信息和生物工程系,20133 米兰,意大利 4 国家研究委员会光子学和纳米技术研究所,20133 米兰,意大利 5 IDIBAPS,Fundaci´o Cl´ınic per la Recerca Biom`edica,08036 巴塞罗那,西班牙 6 Servicio de Endocrinolog´ıa y Nutrici´on。 Hospital Cl´ınic,08036 巴塞罗那,西班牙 7 伯明翰大学计算机科学学院,埃德巴斯顿,伯明翰,B15 2TT,英国 8 HemoPhotonics SL,08860 Castelldefels(巴塞罗那),西班牙 9 IMV Imaging,16000 Angoulˆeme,法国 10 VERMON SA,37000 图尔,法国 11 Instituci`o Catalana de Recerca i Estudis Avanc¸ats(ICREA),08015 巴塞罗那,西班牙
我们将重点介绍 KPFM 的基本原理及其在无机纳米结构和纳米材料中的应用,例如碳纳米管 (CNT)、石墨烯、纳米晶体、Si 基纳米器件等。我们将回顾用于电测量的开尔文探针法的物理背景,然后重点介绍两种 KPFM 方法:一种称为幅度调制 KPFM (AM-KPFM),另一种称为频率调制 KPFM (FM-KPFM)。我们还将讨论一种特殊的方法,无反馈 KPFM,用于检测高电压。然后,我们将分析如何通过仪器实现上述 KPFM 方法以及影响 KPFM 分辨率、准确度、灵敏度和重复性的因素。最后,我们将讨论 KPFM 在无机纳米结构和纳米材料表征中的应用。我们将主要关注五个 KPFM 应用:表面电荷检测、功函数和掺杂水平研究、电荷转移研究、场效应晶体管和原子分辨率 KPFM。
摘要 我们研究了在超高真空低温扫描隧道显微镜 (STM) 中由飞秒激光激发 (亚) 纳米隧道结所驱动的光电流。尖端回缩曲线揭示了光驱动电荷转移,该曲线显示在极大的尖端-样品距离下有电流贡献,证明在较高能量下光激发电子的有效势垒高度大大降低。我们的测量表明,光诱导电子传输的幅度可以通过激光功率以及施加的偏置电压来控制。相反,光电流的衰减常数仅受这些参数的微弱影响。通过获取恒定电流地形图证明了具有光电子的稳定 STM 操作。通过使用一维势垒模型分析光电流,推导出多光子吸收导致的有效非平衡电子分布。
可以使用XEP数据采集软件直接从可访问的信号通道中读取直流悬臂偏转信号。可以通过将信号发送到锁定放大器来读取悬臂偏转信号的交流部分,该放大器可以以ω频率读取信号的部分,或以2Ω频率读取信号的部分。一起,这三个信号可用于获取有关样品电气特性的信息。例如,电容在方程式中以电容与尖端间距的比率为c/d。如果Z反馈回路保持尖端到样本距离恒定,则C/D与电容成正比。ω信号是上面公式(2)中标记的术语(b)的系数,包含C/D和表面电势的贡献。假设V DC和V AC是已知的,您仍然无法将电容的贡献和对测量ω信号的表面电势分开。然而,2Ω信号是上面标记(c)的术语的系数,仅包括电容的贡献。因此,2Ω信号可用于使Ω信号归一化,从而隔离表面电势的贡献。
该预印本版的版权持有人于2024年8月15日发布。 https://doi.org/10.1101/2024.04.22.590491 doi:Biorxiv Preprint