摘要 - 本文研究了开关矩阵对用于脑冲程监测的多视图和低复杂性便携式微波成像系统的影响。它考虑了两种开关解决方案:依靠RF电子开关的临时解决方案和使用固态开关的紧凑型现成的解决方案。进行的分析认为路径衰减和通道间隔离。它研究了扫描时间的不同组件的影响,例如切换,通信,获取时间以及系统动力学对成像性能和监视功能的影响,在识别系统瓶颈的同时优化系统设置。该系统使用升级的天线匹配模块,并使用模仿的出血中风不断发展的场景在实验上进行实验,这证明了两种切换溶液在跟踪和定位中风进展中的有效性。还报道了重复性和对假阳性病例的敏感性的测试。
对在医疗领域的微波成像(MWI)的潜在用途(主要是由于其便携性,低成本,安全使用非电源辐射和非侵入性)的兴趣越来越大。它已被应用,例如用于乳腺癌诊断[1]和脑冲程检测[2],[3]。MWI工作原理是在微波频率下健康组织与受影响的组织之间存在介电对比度。为了解决结果不良问题,可以使用对比度倒置(CSI)方法定量重建感兴趣域(DOI)中的介电特性[4]。CSI是一种基于优化的算法,可最大程度地降低对比度和对比源变量中特殊形成的功能。在这里,CSI算法与有限元方法(FEM)求解器[5]结合起作用,该方法将整个体积分散使用,不合理且不均匀。这使我们能够建模完整的天线几何形状,包括合成环境中的同轴饲料端口[6],从而导致更现实的模拟场景。它还允许我们在反转模型中包含一个不均匀的数值背景(类似于[7],[8]中描述的过程)。尽管场数使用线性边缘元件,但最初使用脉冲基函数来表达FEMCSI的对比度和对比度的脉冲函数[9],[10]。在这里,目的是提出一种使用磁场的基础函数获得的替代离散化,也用于对比源变量。对于简化的方案,在[11]中报告了初步结果,其中标准实施[12]与提议的
对用于水加热的技术进行生命周期评估(LCA)对于理解其整个生命周期的环境影响至关重要。此分析有助于评估与每种技术相关的资源消耗,能源使用和排放。因此,在本研究中提出了单极天线和微波炉的比较LCA,以确定最可持续的替代方案。利用Simapro软件,使用TRACI 2.1方法评估结果,以进行表征和归一化数据。两个系统的比较LCA用电磁辐射加热1 L的水表明,单极天线的环境影响低于微波炉。在所有环境影响类别中,发现微波炉的环境影响大于单极天线的97.5%。与微波炉相比,使用单极天线可以将与GWP相关的排放量减少36.37 g CO2 EQ/L。这项研究的结果表明,在水加热应用中,单极天线比微波炉具有显着的环境优势。单极天线在所有评估的环境类别中表现出较低的影响,包括全球变暖潜力,烟雾,酸化和富营养化。这些结果强调了单极天线作为水加热的可持续替代品的潜力,这对减少日常应用的生态足迹的影响。
摘要:血糖的测量受到多种约束的影响;在设计电磁非侵袭性传感器时,必须识别和量化这些约束。第二阶段涉及这些约束的影响的水平。在这项工作中,我们研究了前臂中静脉半径对谐振微波传感器的影响,以测量糖血症。我们使用与微波谐振器接触的提议的组织模型的COMSOL多物理进行了数值模拟。其他一些因素会影响测量,例如温度,灌注,传感器定位和运动,组织异质性和其他生物学活性。传感器必须适合上述约束。由于静脉的大小从一个人变为另一个人,因此传感器看到的介电特性会有所不同。在模拟传感器的共振频率中为不同静脉尺寸的谐振频率所产生的变化证明了这一点。评估的第二个约束是剂量法。应评估任何电磁设备的特定吸收率(SAR),并将其与安全标准中的SAR限制进行比较,以确保用户的安全性。模拟结果与安全标准中的SAR限制非常吻合。
Blaise Ravelo 1,IEEE 会员,Mathieu Guerin 2,IEEE 会员,Jaroslav Frnda 3,4,IEEE 高级会员,Frank Elliot Sahoa 5,Glauco Fontgalland 6,IEEE 高级会员,Hugerles S. Silva 7,8,IEEE 会员,Samuel Ngoho 9,Fayrouz Haddad 2,IEEE 会员,以及 Wenceslas Rahajandraibe 2,IEEE 会员 1 南京信息工程大学(NUIST),电子信息工程学院,江苏南京 210044 2 艾克斯-马赛大学,CNRS,土伦大学,IM2NP UMR7334,13007 马赛,法国 3 日利纳大学交通运输与通信运营与经济学院定量方法与经济信息学系, 01026 Zilina, 斯洛伐克 4 电信系,电气工程和计算机科学学院,VSB 俄斯特拉发技术大学,70800 俄斯特拉发,捷克共和国 5 Laboratoire de Physique Nucléaire et Physique de l'Environnement (LPNPE), Université d'Antananarivo, Antananarivo 101, Madagascar 6 联邦大学Campina Grande,应用电磁和微波实验室,Campina Grande/PB,58429,巴西 7 Instituto de Telecomunicações and Departamento de Eletrónica,Telecomunicações e Informática,Universidade de Aveiro,Campus Universitário de Santiago,3810-193 Aveiro,葡萄牙 8 巴西利亚大学电气工程系(UnB),联邦区70910-900,巴西 9 法国系统科学协会 (AFSCET),巴黎 75013,法国
在本文中,Sam A. Masih的隶属详细信息被错误地作为“分子和细胞工程系,Higginbottom农业大学,技术与科学大学,印度Prayagraj 211007,印度Prayagraj 211007”,但应该是分子和细胞工程学系” 211007,印度。原始文章已得到纠正。
学术共识引用学术共享引用O'Keefe,John T.,“使用二锡氧化物(ITO)的光学透明的RF组件启用混合光学微波空间通信”(2024)。博士学位论文和硕士论文。870。https://commons.erau.edu/edt/870
b'Introfuction。现代宇宙学的目标之一是曲率扰动P(K)的原始功率谱的表征。在通货膨胀期间,在辐射和物质时代的哈勃半径经典和重新输入膨胀的半径时,长波长量子波动扩增,为重力不稳定的初始种子提供了宇宙大规模结构中的初始种子。P(k)上最严格的约束来自宇宙微波背景(CMB)各向异性的表达,揭示了在范围内非常大的尺度上的近规模不变的,略带红色的频谱[0。001,0。1] mpc \ xe2 \ x88 \ x92 1。Planck DR3数据在k = 0时限制了p(k)的幅度a s。05 MPC \ XE2 \ x88 \ x92 1及其Spec-Tral索引到LN 10 10 A = 3。044 \ xc2 \ xb1 0。014和N S = 0。9649 \ xc2 \ xb1 0。0042分别为68%Cl [1]。 银河系可以将这些约束扩展到O(1)MPC \ Xe2 \ x88 \ x92 1,但较小的尺度仍然很大程度上不受约束。 Recent observations of a Stochastic Gravitational Wave Background (SGWB) at nHz frequencies by Pul- sar Timing Arrays (PTA) [2\xe2\x80\x935] have sparked a signifi- cant interest in P ( k ) at much smaller scales, since scalar fluctuations can generate such a SGWB at second order in perturbation theory [6 \ xe2 \ x80 \ x938]在秤[10 7,10 9] mpc \ xe2 \ x88 \ x92 1。 如果下达,PTA测量值可能会在通货膨胀的后期提供有价值的信息,对理论模型产生了深远的影响。0042分别为68%Cl [1]。银河系可以将这些约束扩展到O(1)MPC \ Xe2 \ x88 \ x92 1,但较小的尺度仍然很大程度上不受约束。Recent observations of a Stochastic Gravitational Wave Background (SGWB) at nHz frequencies by Pul- sar Timing Arrays (PTA) [2\xe2\x80\x935] have sparked a signifi- cant interest in P ( k ) at much smaller scales, since scalar fluctuations can generate such a SGWB at second order in perturbation theory [6 \ xe2 \ x80 \ x938]在秤[10 7,10 9] mpc \ xe2 \ x88 \ x92 1。如果下达,PTA测量值可能会在通货膨胀的后期提供有价值的信息,对理论模型产生了深远的影响。最近的研究表明,这种标量引起的重力波背景(SIGWB)可以为PTA检测提供一个能力的解释,并且可能会对来自贝叶斯观察的许多其他候选者进行案例[9,10](但是,请参阅[9 \ xe2 \ x80 \ x80 \ x9313],以ellite tountion of Extimation of Exteration to inton of toseation portod of tosod of tosod of to pod stod of pod,以供pbod of profod of prod。 [11 \ xe2 \ x80 \ x9316]用于替代分析)。因此,设计这一假设的进一步检验至关重要,并且与cos-'
aq:1 =请确认或为本文研究添加任何资金或财务支持的详细信息。aq:2 =请为您的资助代理提供首字母缩写的扩展。提供正确的确认将确保对资助者有适当的信誉。aq:3 =如果您还没有这样做,请确保您已为论文提交了图形摘要。GA应该是您所接受的文章中的当前图像或图像。GA将显示在您的文章摘要页面上的IEEE Xplore上。请从纸张中选择当前的图,并尽早提供标题,以便为图形摘要提供标题。请注意,字幕不能超过1800个字符(包括空格)。如果您提交了视频作为图形摘要,请确保有一个覆盖图像和标题。覆盖图像通常是最能代表视频的视频的屏幕截图。这是针对可能无法访问视频观看软件的读者。请参阅下面的链接中的一个示例:http://ieeeeacess.ieee.org/submitting-an-article/ aq:4 =请提供参考日期。[18]。aq:5 =请提供第并发行编号。或一个月参考。[38]。aq:6 =请为作者Glauco Fontgalland和Fayu Wan提供更好/更高质量的图像。aq:7 =当作者Mathieu Guerin获得博士学位时,请提供完成年份。程度。
1 都灵理工大学电子与电信系,意大利都灵 10129;jorge.tobon@polito.it (JATV);giovanna.turvani@polito.it (GT);david.rodriguez@polito.it (DOR-D.);mario.casu@polito.it (MRC) 2 意大利国家研究委员会环境电磁传感研究所,意大利那不勒斯 80124;scapaticci.r@irea.cnr.it (RS);crocco.l@irea.cnr.it (LC) 3 那不勒斯费德里科二世大学电气工程与信息技术系,意大利那不勒斯 80125;gbellizz@unina.it 4 巴黎电气工程组 (GeePs)、法国国家科研中心、中央理工高等电力学院、巴黎南部大学、Univ.巴黎萨克雷大学,索邦大学,91190 伊维特河畔吉夫,法国; nadine.joachimowicz@paris7.jussieu.fr 5 Laboratoire des Signaux et Systèmes (L2S), Université Paris-Saclay, CNRS, CentraleSupélec, 91190 Gif-sur-Yvette, France; bernard.duchene@l2s.centralesupelec.fr 6 那不勒斯费德里科二世大学高级生物医学科学系,80131 那不勒斯,意大利; enrico.tedeschi@unina.it * 通讯:francesca.vipiana@polito.it