本版新增内容 5 低噪声放大器 5 低相位噪声放大器 5 宽带分布式放大器 5 线性放大器和功率放大器 5 GaN 功率放大器 5 数字步进衰减器 5 I/Q 下变频器/接收器 5 I/Q 上变频器/下变频器/收发器 6 集成 LO 的 I/Q 解调器 6 V 波段发射器/接收器 6 集成 VCO 的整数 N PLL 6 模拟可调低通/带通滤波器 6 数字可调滤波器 6 SPDT 开关 7 SP3T、SP4T、SP6T、SP8T 开关 7 波束形成器 7 高速模数转换器 >20 MSPS 7 高速数模转换器 ≥30 MSPS 7 时钟发生器和同步器 7 5G 毫米波网络无线解决方案和 Massive MIMO 解决方案 7 业界最完整的 24 GHz 至 29.5 GHz MMW 5G 网络无线解决方案 8 业界最完整的 37 GHz 至 43.5 GHz MMW 5G 网络无线解决方案 9 Massive MIMO(M-MIMO):5G 速度竞赛的快速通道 10
本微波频率半导体放大器和振荡器数据表格由美国国家标准局电子器件数据服务处编制。该服务处成立于 1948 年,旨在向该局工作人员提供电子管技术数据,后来服务范围扩大到政府和工业界的其他科学家和工程师。在此项目实施过程中,大量有关电子管和半导体器件的信息被积累在穿孔卡片上。为了使这些信息更容易获得,设计了一个系统,能自动将数据制成手册。目前的表格包括《微波管数据表格》,NBS 手册 104(1967 年);《接收管数据表格》,NBS 手册 103(1967 年);《东欧电子器件数据表格》,NBS 报告 9925(1968 年);以及《截至 1967 年 10 月苏联电子设备已出版数据汇总》,NBS 技术说明 441,目前正在更新。
作为美国出口管制改革 (ECR) 计划的一部分,美国商务部 (BIS) 和国务院 (DDTC) 于 2014 年 7 月 1 日宣布对微波单片集成电路 (MMIC) 功率放大器和分立微波晶体管实施新的出口管制。在美国商务管制清单中,对这些设备的管制将从双重用途/商业类别 (3AOOI) 移至军用类别 (3A611)。尽管这些物品仍受美国商务部管辖,但它们将被视为军用物品,并受到比目前更严格的出口管制。ADI 销售各种 MMIC 功率放大器,在 MMIC 市场占据有利地位。ADI 认为,针对军用电子产品(尤其是 MMIC 和微波晶体管产品)实施的新出口管制将对美国公司造成不利影响,当这些变化于 2014 年 12 月底生效时,这些产品的出口将变得更加困难,在某些情况下甚至是不可能的。
版权所有 © 2023,欧洲微波协会 (EuMA) 保留所有权利 *** 这是 IEEE 数字图书馆中内容的印刷版。电子媒体版本固有的一些格式问题也可能出现在此印刷版中。 IEEE 目录号:CFP23455-POD ISBN(按需印刷):979-8-3503-4739-5 ISBN(在线):978-2-87487-072-9 本出版物的其他副本可从以下地址获得: Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA 电话:(845) 758-0400 传真:(845) 758-2633 电子邮件:curran@proceedings.com 网站:www.proceedings.com
CO-OPS 海洋系统测试和评估计划促进新技术向运营状态的过渡,从研发社区中选择新开发的传感器或系统,并将其带入监测环境。OSTEP 为使用现有传感器提供了可量化和可辩护的理由,以及选择新系统的方法。该计划建立并维护现场参考设施,并与面临类似挑战的其他机构合作,在非运营现场环境中检查设备。通过 OSTEP,对传感器进行评估,开发质量控制程序并生成维护例程。现场使用的参考系统的质量由严格的可追溯校准和冗余传感器保证。
我们提出了一个现实的设置,灵感来自现有的实验,在此设置中我们开发了一种实现分布式量子门的通用形式。通过在远距离节点之间建立双向量子通道的量子链路,我们的提案既适用于节点间通信,也适用于节点内通信,并可处理从量子链路的少数模式到多数模式极限的各种场景。我们能够在每种操作范围内设计快速可靠的状态传输协议,再加上对散射过程的详细描述,我们能够设计两组确定性的通用分布式量子门:这些门在量子网络中的实现不需要纠缠分布或测量。通过采用对物理设置的真实描述,我们可以确定量子链路中最相关的缺陷以及最佳操作点,从而导致不完整性为 1 − F ≈ 10 − 2 –10 − 3 。
摘要:在下一个未来,我们将在日常生活中包围着许多相对便宜的计算设备,配备了无线通信和感应,并以“ Pervasive Intelligence”的概念为基础,在这些基础上,我们可以从这些基础上设想出我们的未来世界作为所有事物的Internet(Iot/IoE)(Iot/IOE)(Iot/IOE),而消费者/IOT/IOT/IOE IOT/IOE IOE和ioe ioe and Industrial and Industrial Iot and ioe and iotial iot iot iot iot iot。实际上,物联网是具有无限应用潜力的技术范式,它越来越成为能够提高企业竞争力,公共行政部门效率和生活质量的现实。在过去的几年中,已经开发了许多IOT启发的系统,并且应用领域已经扩展和深刻发展:智能家居,智能建筑,智能计量,智能工厂,智能汽车,智能汽车,智能环境,智能农业,智能农业,智能农业,智能物流,智能物流,生命环保,智慧零售和智能健康。物联网无线传感器节点的关键所需特征之一是它可以自主从能量收集(EH)进行自主操作的能力,而不是依靠寿命有限的笨重电池。此外,对于许多上述场景,可以预见可穿戴的解决方案,以进一步增加物联网范式的普遍扩散,从而使许多设备和个人相互连接。成功开发成功的RF自主系统(可能可穿戴)的关键字如下:
摘要 Polygonum cognatum Meissn. 是一种野生可食用植物,在土耳其被称为 madimak。其嫩芽在春季栽培并用作蔬菜。本研究评估了不同干燥处理对 madimak 植物颜色属性的影响,这些植物使用两种不同的方法干燥:热风干燥和微波干燥。风干处理分别在 60、70 和 80 °C 下进行。微波干燥使用四种不同的微波功率水平进行,范围在 160 至 750 W 之间。madimak 的微波干燥比热风干燥更快。随着微波功率的提高,干燥时间大大减少。干燥过程在 0.058 到 0.308 小时之间完成,具体取决于微波功率水平,而热风干燥在 2.583 到 4.166 小时之间。微波干燥对样品颜色质量的影响不如热风干燥大。微波干燥植物的叶绿素 a、叶绿素 b 和总叶绿素含量显著保留。颜色和叶绿素属性均表明,与热风或常温干燥相比,微波干燥更适合马迪马克植物。研究发现,在 750 W 微波功率下,颜色变化最小,叶绿素含量最高。此外,80 °C 热风干燥和 160 W 微波功率水平的最低比能量需求分别为 44.58 kWh/kg 和 107.00 kWh/kg。结果表明,热风干燥温度之间的比能量需求没有显著差异,而微波功率水平之间的差异很大。关键词:Madimak、微波、热风、颜色、比能、可食用植物、叶绿素引言叶绿素是分布最广的植物色素,叶绿素 a 和 b 在食品技术中的重要性源于它们在绿色蔬菜中的作用(King 等人,2001)。叶绿素 a 和叶绿素 b 是主要形式,通常存在于常用于食用的高等植物中,它们的比例大约为 3:1。叶绿素 a 和 b 都是四吡咯酞菁氧合物的含镁衍生物。叶绿素 a 和叶绿素 b 在感知颜色和热稳定性方面也不同。叶绿素 a 呈蓝绿色,叶绿素 b 呈黄绿色(Cui 等人,2004)。它们极易在加工和储存过程中降解。叶绿素转化为脱镁叶绿素和其他衍生物会导致从鲜绿色变为暗橄榄绿色或橄榄黄色,最终被消费者视为品质的下降 King 等人(2001 年)和 Ahmed 等人(2001 年)。叶绿素保留对于确定热脱水绿色植物的最终质量非常重要。在较高温度和酸性条件下,叶绿素环中的中心镁被两个氢离子取代,绿色叶绿素转化为橄榄棕色脱镁叶绿素。在约 60–80 o C 的较低温度下,叶绿素酶活性增加,形成绿色叶绿素,然后叶绿素易受镁损失的影响,从而形成橄榄褐色脱镁叶绿素 (Cui 等,2004)。颜色是植物产品的重要质量属性,叶绿素已被用作绿色蔬菜的质量指标 (Guan 等,2005)。Polygonum cognatum Meissn. 是一种野生植物,在土耳其语中称为“madimak”。这种可食用植物是一种多年生细长木本植物。它生长在海拔 720-3000 米的路边、斜坡和悬崖上。春季收集带叶的嫩芽 (Yildirim 等,2003)。植物的新鲜叶子和茎可作为蔬菜食用。干燥的植物可用作药用植物 (Ozbucak 等,2007)。在土耳其民间医学中,它被用于各种目的,例如其利尿作用和治疗糖尿病(Yildirim 等人,2003 年)。脱水是最古老的食品保存方法之一,是食品加工中非常重要的一个方面。产品在干燥过程中产生的热损伤与温度成正比
单光子检测(SPD)发现在许多乐趣科学和高级工程应用的许多最前沿领域中,从研究宇宙红外背景研究星系形成到超导量子的纠缠,单分子光谱学和遥感1、2。近年来,超导量子计算,高保真量子测量,量子密钥分布和量子网络在微波频率范围3中呼吁SPD的快速发展。当前的SPD方案对高频范围内的光子具有良好的灵敏度(例如,可见光)。然而,对于低频,低能,微波光子,它们的灵敏度大大降低。因此,在这种低频下对单个光子的检测很容易出现经典噪声的错误。石墨烯单光子检测器(即石墨烯超导约瑟夫森连接)已成为一个新平台,以满足检测单微波光子4、5的需求。它能够在较大的频率范围内执行SPD,尤其是由于其线性能量分散关系,在红外和微波频率下。像石墨烯一样,CD 3 AS 2中的螺旋表面状态,Dirac半学6-8,也具有狄拉克线性分散关系。结果,CD 3 AS 2也对低频微波光子敏感。与石墨烯相比,基于以下原因,CD 3 AS 2对于微波光子检测9可能更有希望。首先,已经报道了较高的电子迁移率。1 a。的确,最近在狄拉克半米CD 3中报道了高达10 7 cm 2 /vs的迁移率AS 2单晶10。第二,它们很容易通过许多常规的生长技术(例如蒸气运输11,MBE 12,PLD 13技术)而生长;这使他们可以轻松地集成到任何光学设备结构,例如微波腔。第三,CD 3 AS 2中的唯一电子和光学性能可能允许偏振分辨的光子检测14。第四,CD 3中的超导性为2薄膜15,CD 3中的超电流状态通过超导接近效应16-18的基于2个基于2个基于2个基于2个薄膜。这可能会使发育良好的单个光子检测方案(例如超导纳米线和过渡边缘传感器2)在CD 3中作为2材料系统中的可能性。final,拓扑半学的螺旋表面状态与常规超导体结合使用,可以容纳Majorana零模式,可用于构造拓扑量子。最近还提出了使用Majora零模式的新单个光子检测方案。一起,预测微波单光子检测能力和量子功能将导致高保真量子计算20。在本文中,在近端诱导的超导状态中的微波反应以CD 3 AS 2 AS 2 AS 2 AS 2 AS 2 AS 2的Super-Contucting量子干扰装置(Squid)结构表示,如图在我们的鱿鱼装置中,在范围为0.5至10 GHz的各种微波频率下观察到大型照片响应。