为了利用环境中存在的微生物以获得其有益资源,有效的选择和从环境样品中隔离了微生物是必不可少的。在这项研究中,我们使用树脂制造了一个用于微生物培养的凝胶填充的微孔阵列装置。该设备具有集成的密封机制,可以基于微生物的培养物进行高密度隔离。该设备易于管理,使用明亮场显微镜促进观察。这款由甲基丙烯酸甲酯(PMMA)/聚乙二醇三苯二甲酸酯(PET)制成的低成本装置具有900个微孔(600μm×600μm×600μm×700μm),填充在玻璃滑板板中的微生物培养基培养基。它还具有用于维持微凝胶中水分含量的凹槽。井之间的分区壁具有高度疏水的涂层,可抑制微生物迁移到相邻井中并防止液体物质交换。密封后,该设备可以在琼脂糖凝胶中保持水分7天。在使用该设备的细菌培养实验中,将环境细菌分离出来,并在3天后在单个井中培养。此外,然后从井中捡起孤立的细菌并重新培养。该设备可有效地首次筛选海洋环境样品中的微生物。
BD Probetec Trichomonas阴道/IS(TV)Q'扩增DNA分析(TVQ分析)基于使用放大引物和荧光标记的探测器探针的同时扩增和检测靶DNA。The reagents for SDA are dried in two separate disposable microwells: the Priming Microwell contains the amplification primers, fluorescently-labeled detector probe, nucleotides and other reagents necessary for amplification, while the Amplification Microwell contains the two enzymes (a DNA polymerase and a restriction endonuclease) that are required for SDA.BD Viper T R M系统移液管从每个提取管中纯化的DNA溶液中的一部分进入底漆的微孔,以补充含量。短暂孵育后,将反应混合物转移到相应的,预热的放大微孔中,该放大微孔被密封以防止污染,然后在两种热能控制LED LED荧光读取器之一中孵育。通过计算峰值荧光(在扩增过程中最大的相对荧光单元(MAXRFU))来确定毛果素丝虫阴道/IS DNA的存在或不存在。
对黄曲霉毒素和其他霉菌毒素的最佳保护是通过沿着从谷物的初始收获到成品的途径来监测它们在饲料和食物中的存在。对黄曲霉毒素的置信度测试是一种定量的ELISA Microwell分析,非常适合从食品制造商到商业实验室的实验室设置的人。该测定需要一个650 nm的滤波器微波测定读取器。
对黄曲霉毒素和其他霉菌毒素的最佳保护是通过沿着从谷物的初始收获到成品的途径来监测它们在饲料和食物中的存在。对黄曲霉毒素的置信度测试是一种定量的ELISA Microwell分析,非常适合从食品制造商到商业实验室的实验室设置的人。该测定需要一个650 nm的滤波器微波测定读取器。
对Zearalenone和其他霉菌毒素的最佳保护是通过沿着从谷物的初始收获到成品的途径进行测试,从而监测它们在饲料和食物中的存在。对Zearalenone的置信度测试是一种定量的ELISA Microwell分析,非常适合从食品制造商到商业实验室的实验室设置的人。该测定需要一个650 nm的滤波器微波测定读取器。
对黄曲霉毒素和其他霉菌毒素的最佳保护是通过沿着从谷物的初始收获到成品的途径来监测它们在饲料和食物中的存在。对黄曲霉毒素的置信度测试是一种定量的ELISA Microwell分析,非常适合从食品制造商到商业实验室的实验室设置的人。该测定需要一个650 nm的滤波器微波测定读取器。
了解基因调节和单细胞异质性需要有关蛋白质表达和RNA的信息,包括抗原特异性TCR/BCR的分析。我们邀请您加入有关基于Microwell的SCRNASEQ,Multioomics及其在各个科学领域的应用程序的信息丰富的混合研讨会。
成年大鼠用cacodylate缓冲的戊二醛 - 丙甲甲醛灌注。用于ASP制备,将皮层样品(1-3 mm)定向MPREP/S胶囊,加载到ASP上,所有制备试剂均在ASP阶段的Microwell板中等分。ASP通过在编程时间内将连续的试剂吸入每个胶囊来执行协议(图1,表1)每隔几秒钟就通过温和流动提供的搅动。然后将胶囊中的环氧浸润的样品从ASP中取出,并在60℃下固化过夜。手动制备在小瓶中进行,并在扁平模具中固化[2]。用T1 BSE检测器在高真空下,在2.0 kV,0.1 na下成像的热燃料体积块。从70 nm的部分摄入的体积约为60 x 60 um x 20 UM。摄入的体积约为60 x 60 um x 20 UM。
摘要:该协议描述了如何使用自动化平台卢斯特罗来进行酵母中光遗传系统的高通量表征。摘要:光遗传学通过遗传编码的光敏感蛋白来精确控制细胞行为。但是,优化这些系统以实现所需的功能范围通常需要许多设计建造测试周期,这是耗时且劳动力的。为了解决这个问题,我们设计了Lustro,该平台将光刺激与实验室自动化相结合,以实现光学遗传系统的高通量筛选和表征。lustro使用配备有照明设备,摇动设备和板读取器的自动化工作站。编程机器人臂以在设备之间移动微孔板,以刺激光遗传学菌株并测量其响应。在这里,我们提出了一种使用lustro来表征酿酒酵母中的基因表达控制的光遗传系统的方案。该协议描述了如何设置Lustro的组件,将照明设备与自动化工作站集成在一起,并提供用于编程照明设备,板块读取器和机器人的说明。简介:光遗传学是一种强大的技术,它使用光敏感蛋白来控制高精度1-3的细胞行为。但是,原型遗传构建体并识别最佳照明条件可能很耗时,这使得很难优化光遗传系统4、5。高通量方法快速筛选并表征了光遗传系统的活性,可以加速设计建造循环的原型构造,
标题 可控凹度微碗可用于精确微尺度质谱分析 Linfeng Xu、Xiangpeng Li、Wenzong Li、Kai-chun Chang、Hyunjun Yang、Nannan Tao、Pengfei Zhang、Emory Payne、Cyrus Modavi、Jacqueline Humphries、Chia-Wei Lu 和 Adam R. Abate* L. Xu 博士、X. Li 博士、K. Chang 博士、C. Modavi 博士、P. Zhang 博士、AR Abate 教授 加利福尼亚大学旧金山分校生物工程和治疗科学系,美国加利福尼亚州旧金山 94158 电子邮件:adam@abatelab.org N. Tao 博士 Bruker Nano Surfaces,美国加利福尼亚州圣何塞 95134 H. Yang 博士 神经退行性疾病研究所,加利福尼亚大学威尔神经科学研究所,美国加利福尼亚州旧金山 94158 W. Li 博士、J. Humphries 博士、C. Lu、 Amyris Inc. 5885 Hollis St #100, Emeryville, CA, 94608 USA E. Payne 密歇根大学化学系,美国密歇根州安娜堡 48104 AR Abate Chan 教授 Zuckerberg Biohub,美国加利福尼亚州旧金山 94158 关键词:微碗、微孔阵列、质谱成像 摘要:图案化表面可通过分离和浓缩分析物来提高激光解吸电离质谱的灵敏度,但其制造可能具有挑战性。在这里,我们描述了一种简单的方法来制造带有微米级孔图案的基底,与平面相比,它可以产生更准确、更灵敏的质谱测量结果。这些孔还可以浓缩和定位细胞和珠子以进行基于细胞的分析。 1. 引言基质辅助激光解吸电离(MALDI)是一种软电离质谱(MS)技术,常用于蛋白质组学和代谢组学的生物学研究[1–
