作为ERF合作伙伴之一,斯图加特大学在塑造活动中发挥了重要作用。“我们将机器人技术和人工智能聚集在各种研究和应用领域中:斯图加特大学的跨学科团队正在与高功能强大的合作伙伴一起工作,”校长Peter Middendorf教授说。“我们的目标是通过出色的研究和快速转移为解决我们社会面临的紧迫挑战做出贡献。欧洲机器人论坛为我们提供了一个很好的机会,可以介绍和讨论新知识和新技术。”除其他事项外,ERF展览展示了Stuttgart Partners University,Fraunhofer IPA和InnovationsCampusMobilität的可Robocoction项目,以及每小时超过1300个未知物体的bin包装应用程序
1 月 29 日下午 6 点,《自由的面貌》系列第三次小组讨论将聚焦“记忆中的历史——我们允许哪种过去?”这一主题。纽约的 Omri Boehm 教授和特拉维夫的 Natan Sznaider 教授将与耶拿当代历史学家 Stefanie Middendorf 教授和耶拿东欧历史学家 Joachim von Puttkamer 教授讨论以下问题:我们是忘却了历史,还是沉迷于历史?过去是否为现在提供了普遍的教训?在德国的记忆文化受到批评的同时,历史修正主义正在全球范围内兴起。与此同时,大屠杀和殖民主义的记忆似乎是不可调和的。冲突很多,这意味着可以期待一场非常有趣的双语小组讨论,这也是第一次“耶拿当代历史讲座”。需要注册。
国科学技术出版社 , 2019 [2] Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis using event-related brain potentials. Electroencephalogr Clin Neurophysiol, 1988, 70: 510-23 [3] Neuper C, Pfurtscheller G. 134 ERD/ERS based brain computer interface (BCI): effects of motor imagery on senseimotor rhythms. Int J Psychophysiol, 1998, 1: 53-4 [4] McMillan GR, Calhoun G, Middendorf MS, et al. Direct brain interface utilize self-regulation of stable-state visual evoked response (SSVER)[C]. Vancouver: Proc RESNA Ann Conf, 1995 [5] Collinger JL, Wodlinger B, Downey JE, et al. Direct brain interface utilize self-regulation of stable-state visual evoked response (SSVER)[C]. Vancouver: Proc RESNA Ann Conf, 1995 [6] Collinger JL, Wodlinger B, Downey JE, et al.四肢瘫痪患者的高性能神经假体控制。柳叶刀,2013,381:557-64 [6] Ramos-Murguialday A、Broetz D、Rea M 等人。脑机接口在慢性中风康复中的应用:一项对照研究。Ann Neurol,2013,74:100-8 [7] Minev IR、Musienko P、Hirsch A 等人。生物材料。用于长期多模态神经接口的电子硬脑膜。科学,2015,347:159-63 [8] Musk E、Neuralink。一个拥有数千个通道的集成脑机接口平台。J Med Internet Res,2019,21:e16194 [9] Flesher SN、Downey JE、Weiss JM 等人。唤起触觉的脑机接口可改善机械臂控制。Science,2021,372:831-6 [10] Liu D,Xu X,Li D 等。利用局部视觉运动反应进行颅内脑机接口拼写。Neuroimage,2022,258:119363 [11] Willett FR、Avansino DT、Hochberg LR 等。通过手写实现高性能脑机文本通信。Nature,2021,593:249-54 [12] BRAIN 2025:科学愿景[EB/OL]。[2023-12-08]。http://www.braininitiative.nih.gov/pdf/BRAIN2025_508C.pdf [13] 澳大利亚大脑联盟[EB/OL]。[2023-12-06]。 https://ans.org.au/resources/issues/about-the-australian- brain-alliance [14] 解码和控制大脑信息[EB/OL]。[2023-12-06]。https://www.jst.go.jp/presto/bmi/research_ area_E.html [15] IKEGAYA 脑-AI 混合[EB/OL]。[2023-12-06]。https://www.jst.go.jp/erato/en/research_area/ongoing/jpmjer1801.html [16] Jeong SJ, Lee IY, Jun BO, et al. Korea Brain Initiative: emerging issues and Institutionalization of neuroethics.神经元, 2019, 101: 390-3 [17]科技部关于发布科技创新2030——“脑科学与类脑研究”重大项目2021年度项目申报指南的通知[EB/OL]. (2021-09-16)[2023-04-26]。 https://service.most.gov.cn/kjjh_tztg_all/20210916/4583.html [18]北京市人民政府办公厅关于印发《北京市促进未来产业创新发展实施方案》的通知[EB/OL]。 (2023-09-08)。 [2023-12-08]。 https://www.beijing.gov.cn/zhengce/ zhengcefagui/202309/t20230908_3255227.html [19] Brückerhoff-Plückelmann F,Bente I,Becker M,等。
斯科特·加尔斯特空军研究实验室 俄亥俄州赖特-帕特森空军基地 面部肌电图 (fEMG) 是一种肌电图测量技术,主要用作测量情感的工具,但之前的实验表明,它也有助于量化认知工作量。在当前的研究中,实时监测了两个与任务无关的面部肌肉,皱眉肌和额外侧肌,以确定它们是否对遥控飞机 (RPA) 任务环境中的工作量变化敏感。应用实时信号处理技术从窗口 fEMG 数据中得出中值幅度和零交叉率。对这些特征的统计分析确定,这两种肌肉都对特定工作量操纵的变化很敏感。这项研究表明,从上述肌肉中提取的实时 fEMG 特征有可能作为或有助于认知工作量的指标。未来的工作旨在改进 fEMG 数据收集技术,以产生更灵敏、更具代表性的适合工作量评估的测量方法。长时间保持警惕的能力对于航空航天领域的许多职位来说都至关重要。例如,飞行员、传感器操作员和空中交通管制员必须保持高水平的态势感知,以确保最佳的安全和性能。认知工作量是决定操作员在防止危险后果所需水平上执行能力的重要因素 (Young & Stanton, 2002)。认知超负荷和负荷不足都会导致性能下降,而适度的认知唤醒有助于实现理想的性能能力 (Cohen, 2011)。为了减轻航空航天操作员的警觉负担并帮助他们保持理想的表现,开发了感知-评估-增强 (SAA) 框架,以识别和缓解各种任务环境中的认知工作量不平衡 (Galster & Johnson, 2013)。由于认知工作量的变化已被证明与各种生理事件相关,因此可以应用该框架来感知航空航天操作员产生的一系列生理指标,将这些指标纳入可以评估操作员认知状态的模型中,然后增强操作员的表现以减轻认知超负荷或负荷不足引起的绩效下降 (Wilson & Russell, 2007; Hoepf, Middendorf, Epling, & Galster, 2015; Hoepf et al., 2016)。用于评估工作量 (Hoepf et al., 2016)。为了使基于 SAA 的工作负荷建模方法能够在广泛的任务环境中发挥作用,必须将大量生理测量作为模型的输入。操作员执行的任务的性质可能决定了每种生理测量(皮质、心脏等)的有用性。例如,在心算类型的任务中,发现皮质测量与工作负荷有很好的关联,而心脏测量对主要需要使用仪器的飞行任务中的工作负荷很敏感,而眼部测量与高度依赖视觉的飞行任务中的工作负荷有关(Hankins & Wilson,1998)。许多心理生理学家和工程师正在研究各种生理测量与认知工作负荷之间的相关性,试图进一步提高实时模拟个人认知状态的能力。面部肌电图 (fEMG) 是最近被探索作为认知工作负荷潜在指标的生理信号之一。fEMG 是一种肌电图 (EMG) 测量技术,通过感应和放大产生的微小电脉冲来描述肌肉活动