150 年前,即 1869 年 10 月,弗里德里希·米歇尔完成了我们这个时代最伟大的科学发现之一:分离和鉴定 DNA,即“核蛋白”,作为细胞的核心成分。然而,直到 75 年后,人们才证实 DNA 在细胞生物学中的重要性,直到 1944 年,艾弗里、麦克劳德和麦卡锡证明 DNA 是遗传分子。从那时起,DNA 迅速吸引了科学界和公众的关注,并在接下来的 75 年里成为我们理解生命不可或缺的一部分。然而,第一个发现 DNA 的人仍然默默无闻,甚至经常不被那些与核酸密切合作的科学家所记住。在这个 150 周年纪念日,我们回顾一下这一重大发现是如何完成的,背后的人是谁,以及他是如何试图在当时的背景下理解核蛋白在细胞中的作用的。也许现在是米歇尔的遗产重新受到关注的正确时机。
c-g。此外,为DNA复制机制提供了该模型,该模型后来得到了确认。在这一点上,应该询问为什么沃森和克里克除了其他人外还试图阐明DNA的结构,这在研究人员之间产生了真实的种族。答案导致了1944年,当时艾弗里,麦克劳德和麦卡蒂证实了当时的DNA和没有蛋白质被遗传特征的传播所取代。历史作品实际上是弗雷德里克·格里菲斯(Frederick Griffith)在1928年对的改进,其中死去的病原体能够将非感染的活肺部转变为稳定的致病形式。此处提到的完善旨在排除声明中可能的污染,这可能是导致转型而不是DNA的。从那时起,必须了解DNA的结构,以了解其在遗传中的作用。在上面的两部作品中理解的时期中,基本的DNA单元,核苷酸已经建立了很好的确立,尽管
1 苏黎世大学 (UZH) 分子生命科学系,瑞士苏黎世 8057 5 2 苏黎世神经科学中心,瑞士苏黎世 8057 6 3 弗莱堡大学医学院生理学研究所,Hermann-Herder-Str. 7,79104 弗莱堡,德国 7 4 苏黎世大学脑研究所,8057 苏黎世,瑞士 8 5 斯坦福大学神经生物学系,斯坦福,CA 94305,美国 9 6 斯坦福大学生物工程系,斯坦福,CA 94305,美国 10 7 弗里德里希·米歇尔生物医学研究所,4058 巴塞尔,瑞士 11 8 巴塞尔大学自然科学学院,4003 巴塞尔,瑞士 12 9 苏黎世大学大学研究优先计划 (URPP),发展和学习中的自适应脑回路 (AdaBD),8057 13 苏黎世,瑞士 14 * 通信地址:igor.delvendahl@physiologie.uni-freiburg.de 15
1剑桥大学,剑桥大学,剑桥CB2 CB2 3EJ,英国2号生命之树计划,惠康桑格研究所,英国欣克斯顿3号弗里德里希·米舍(Max Planck Society of Max Planck Society of Max Planck Society tübingen,德国),德国,德国4号,4 4号,卢比根4号,卢旺达,卢旺达5 MPAL 5 MPAL 5 MPAL,RWANDA CENTIPLE,NANDA肯尼亚,莱基皮亚6日生物科学学院,加的夫大学,加的夫CF 10 3AX,英国7英国生态与水文学中心,Wallingford OX10 8BB,英国8 InstitutBotànicede Barcelona(IBB)(IBB),CSIC-CMCNB,CSIC-CMCNB,BARCELONA,BARCELORA康沃尔郡,佩林TR10 9FE,英国11 Turkana Basin Institute,Stony Brook University,Stony Brook,NY 11794,美国12,美国爱丁堡大学进化生物学研究所,英国爱丁堡大学
DNA提取在确定分子生物学的遗传问题中起着至关重要的作用。弗里德里希·米舍(Friedrich Miescher)于1869年在DNA上首次发现了粗糙的提取(Ali等人,2017年)。DNA提取的基本原理由几个步骤组成:(1)使用CTAB(Aboul-Maaty and Oraby and Oraby,2019)或SDS方法(El-Ashram等人,,2016年),而物理破坏,包括使用液氮隔离来研磨样品(Sahu等人,2012年)甚至酶促治疗,例如蛋白酶K(Sirkov,2016)和RNase(Tel- Zur等人。,1999; El-Ashram等。,2016年; Wang等。,2019年)可用于消除潜在的污染; (2)从细胞裂解物化合物中纯化DNA; (3)降水和DNA纯化(Dairawan and Shetty,2020年); (4)使用酒精和(5)含有低离子强度的溶液冲洗样品,通常使用Tris EDTA缓冲液溶解DNA并保护其免受降解。DNA提取方法可以使用
1弗里德里希·米沙尔(Friedrich Miescher)生物医学研究所,瑞士巴塞尔2号CWI,阿姆斯特丹,荷兰,荷兰3斯沃默丹生命科学研究所(SILS)英国6 Google Research,Z€Urich,瑞士7 KIRCHHOFF物理研究所,海德堡大学,海德堡,海德堡,德国海德堡8号,8 8瑞士伯恩大学生理学系9瑞士伯恩大学9理论计算机科学研究所,格拉兹大学,格拉兹大学,格拉兹大学,格拉兹大学,奥地利10 cnrs-cercoce and Instuction and Instuction and Instuction and Mindrance of France and in Minder and in Minder and the France and 313300 tour and insion France and 313300 tour tour and Insuse。渥太华,加拿大渥太华渥太华大学蜂窝分子医学系12个认知科学系,加利福尼亚大学,加利福尼亚大学,加利福尼亚州欧文,加利福尼亚州欧文,13美国计算机科学系,加利福尼亚大学,欧文大学,加利福尼亚州欧文大学,加利福尼亚,加利福尼亚大学,美国电气和电子工程系14伦敦伦敦,伦敦,UKINDENCERICENT:FRMIDEM.ZEN。 https://doi.org/10.1016/j.neuron.2021.01.009
体内哺乳动物干细胞中的G1/s过渡由细胞大小Shicong Xie 1,Shuyuan Zhang 1,Gustavo de Medeiros 2,Prisca Liberali 2&Prisca Liberali 2&Jan M. Skotheim 1,3* 4058巴塞尔,瑞士3 Chan-Zuckerberg倡议,旧金山,CA 94158,美国 *通讯作者(skotheim@stanford.edu)抽象的细胞生长和除法必须协调以保持稳定的细胞大小,但是在多颗粒组织中该协调性如何保持不清楚。在单细胞真核生物中,自主细胞大小控制机制将细胞生长和分裂造成,几乎没有细胞外输入。然而,在多细胞组织中,我们不知道自主细胞大小控制机制是否以相同的方式运行,或者细胞生长和细胞周期进程是否通过细胞超支信号分别控制。在这里,我们通过跟踪成年小鼠中生长的单个表皮干细胞来解决这个问题。我们发现,依赖RB途径的细胞自主尺寸控制机制可以根据单元的电流大小设置S相进入的时间。细胞微环境中的细胞 - 超支变化会影响细胞生长速率,但不会影响这种自主耦合。 我们的工作重新评估了复杂的后生组织内细胞周期调节的长期模型,并鉴定出细胞自主的大小控制是调节体内细胞分裂的关键机制,从而是干细胞异质性的主要贡献者。细胞微环境中的细胞 - 超支变化会影响细胞生长速率,但不会影响这种自主耦合。我们的工作重新评估了复杂的后生组织内细胞周期调节的长期模型,并鉴定出细胞自主的大小控制是调节体内细胞分裂的关键机制,从而是干细胞异质性的主要贡献者。
1发展与疾病研究小组,麦克斯·普朗克分子遗传学研究所,14195柏林,德国; mundlos@molgen.mpg.de(S.M.)2医学和人类遗传学研究所,慈善 - 埃弗里西蒂尼修素柏林,柏林13353,柏林,德国3 MRC伦敦医学科学研究所,du Cane Road,伦敦W12 0NN,英国; liz.ing-simmons@lms.mrc.ac.uk(e.i.-s.); j.vaquerizas@lms.mrc.ac.uk(j.m.v.)4临床科学研究所,伦敦帝国学院,伦敦帝国学院,英国伦敦帝国学院5柏林分子与系统生物学研究所,马克斯·德尔布鲁克分子医学中心,德国柏林13125; stivbio@gmail.com 6生物学,化学和药理学系生物化学研究所,柏林FreieUniversität,14163柏林,柏林,德国7弗里德里希·米沙尔生物医学研究所,毛贝尔贝斯特拉斯特拉斯(Maulbeersstrasse)66,4058巴塞尔,瑞士巴塞尔市; MDC和CharitéBerlin的实验与临床研究中心(ECRC),bllin,德国柏林13125; heathcliff.dorado-garca@charite.de(H.D.G. ); anton.henssen@charite.de(A.G.H.) 9儿科肿瘤学和血液学系,慈善 - 欧弗里弗西蒂·塞米丁伯林,伯林大学伯林大学的公司成员(DKFZ),69120 Heidelberg,德国Heidelberg,12柏林 - 布兰登堡再生疗法中心(BCRT),Charité -universitätsmedizin柏林柏林,奥古斯滕堡Platz,13353柏林,德国,德国,4临床科学研究所,伦敦帝国学院,伦敦帝国学院,英国伦敦帝国学院5柏林分子与系统生物学研究所,马克斯·德尔布鲁克分子医学中心,德国柏林13125; stivbio@gmail.com 6生物学,化学和药理学系生物化学研究所,柏林FreieUniversität,14163柏林,柏林,德国7弗里德里希·米沙尔生物医学研究所,毛贝尔贝斯特拉斯特拉斯(Maulbeersstrasse)66,4058巴塞尔,瑞士巴塞尔市; MDC和CharitéBerlin的实验与临床研究中心(ECRC),bllin,德国柏林13125; heathcliff.dorado-garca@charite.de(H.D.G.); anton.henssen@charite.de(A.G.H.)9儿科肿瘤学和血液学系,慈善 - 欧弗里弗西蒂·塞米丁伯林,伯林大学伯林大学的公司成员(DKFZ),69120 Heidelberg,德国Heidelberg,12柏林 - 布兰登堡再生疗法中心(BCRT),Charité -universitätsmedizin柏林柏林,奥古斯滕堡Platz,13353柏林,德国,德国,
