2。核酸是Friedrich Miescher于1871年发现的最大,最复杂的有机分子。它们是所有负责存储,传输和翻译遗传信息的细胞中发现的大分子。3。有两种类型的核酸:核糖核酸(RNA)和脱氧核糖核酸核酸(DNA)。DNA是用于遗传信息,控制RNA合成的永久存储位置,并根据其氮基碱序列确定蛋白质的发育。4。通过将核酸与细胞核分离,因此可以发现核酸的发现。这些大分子的分子块超过1亿。5。核酸函数包括: * DNA存储遗传信息永久 * DNA控制RNA合成 * DNA基于其氮基序列决定蛋白质的发育6。DNA的双螺旋形成可确保通过在失去或破坏的遗传信息(例如Down's Syndrome或镰状细胞贫血)的情况下提供备份链,从而确保不会发生障碍。7。RNA功能包括: *使用遗传信息合成蛋白质 *基于运输的遗传信息指导蛋白质合成 *通过质膜传递遗传信息8。核酸通过控制有丝分裂,减数分裂和提供细胞呼吸的能量在人体中起着至关重要的作用。9。有丝分裂涉及在细胞分裂过程中复制染色体,从而允许创建具有与母细胞相同遗传信息的相同的子细胞。10。11。减数分裂使用核酸复制来创建性细胞,从而使生殖成为可能,没有生命将无法持续。核酸可以通过利用氮碱腺苷和核糖来提供ATP形式的能量。12。核酸是具有高分子量的物质,由碳,氢,氧,氮和磷组成,并在水解后分解成核苷酸。DNA仅在细胞核内发现,其中包含指导蛋白质产生的遗传信息。通常将其比作蓝图,存储用于构建蛋白质和其他细胞成分的说明。
caspase-2用额外的中心体达里奥·里佐托(Dario Rizzotto)1†,Vincenza Vigorito 2†,Patricia Rieder 1,Filip Gallob 1,Gian Mario Moretta 2,Claudia Soratroi 3,Joel S. Riley 3,Florian Bellutti 2,Steplano li veli li veli 2,liia liia ia ia ia, Sebastian Herzog 3,击败C. Bornhauser 4,Etienne D. Jacotot 5,6; Andreas Villunger 1,3 *&Luca L. Fava 2 * 1奥地利科学学院CEMM分子医学研究中心,1090年,奥地利维也纳。2蜂窝,计算和综合生物学系细胞分部的武装 - 哈尔维德实验室,意大利特伦托大学特伦托大学。3 Innsbruck的生物中心发育免疫学研究所,Innsbruck,6020,奥地利因斯布鲁克。 4瑞士苏黎世大学儿童医院肿瘤学和儿童研究中心,瑞士8032。 5 Inserm U1268,药物化学和翻译研究。 巴黎,法国F-75006。 6AccultédePharmacie,UMR 8038 Citcom,巴黎大学,巴黎,F-75006,法国。 †这些作者对这项工作做出了同样的贡献‡目前的地址:瑞士巴塞尔市的弗里德里希·米沙尔生物医学研究所(FMI)。3 Innsbruck的生物中心发育免疫学研究所,Innsbruck,6020,奥地利因斯布鲁克。4瑞士苏黎世大学儿童医院肿瘤学和儿童研究中心,瑞士8032。 5 Inserm U1268,药物化学和翻译研究。 巴黎,法国F-75006。 6AccultédePharmacie,UMR 8038 Citcom,巴黎大学,巴黎,F-75006,法国。 †这些作者对这项工作做出了同样的贡献‡目前的地址:瑞士巴塞尔市的弗里德里希·米沙尔生物医学研究所(FMI)。4瑞士苏黎世大学儿童医院肿瘤学和儿童研究中心,瑞士8032。5 Inserm U1268,药物化学和翻译研究。巴黎,法国F-75006。6AccultédePharmacie,UMR 8038 Citcom,巴黎大学,巴黎,F-75006,法国。 †这些作者对这项工作做出了同样的贡献‡目前的地址:瑞士巴塞尔市的弗里德里希·米沙尔生物医学研究所(FMI)。6AccultédePharmacie,UMR 8038 Citcom,巴黎大学,巴黎,F-75006,法国。†这些作者对这项工作做出了同样的贡献‡目前的地址:瑞士巴塞尔市的弗里德里希·米沙尔生物医学研究所(FMI)。运行标题:额外的中心体触发MOMP关键字:中心体,凋亡,piddosome,p53,p53,bcl2家族 *通讯:通讯教授:安德烈亚斯·维伦格(Andreas Villunger)教授,博士学位发展免疫学研究所,医学院医科大学 +43-512-9003-70380Fax: +43-512-9003-73960 Email: andreas.villunger@i-med.ac.at ORCID:0000-0001-8259-4153 OR Prof. Luca Fava, PhD Email: luca.fava@unitn.it Armenise-Harvard Laboratory of Cell Division Department of Cellular,计算和综合生物学 - 科比奥,特伦托大学通过Sommarive9,38123 Trento,ph:+390461285215电子邮件:luca.fava@unitn.it orcid:0000-0002-6741-1723
3伊拉克库法大学药学学院,伊拉克库法大学4护理学院,摘要:脱氧核糖核酸(DNA)带有遗传性代码,这些代码由细胞翻译而成,可以同步核糖核酸(RNA)和多肽(RNA)和多肽,这些核酸(RNA)和多肽可以产生和表演VITARE VILATE和PERRACE VITAR。 双螺旋结构是Watson和Crick提出的DNA的最多研究的模型。 DNA作为遗传物质起作用的能力可以在细胞分裂过程中存储和进行,以使该信息加倍并传输到传入的一代。 DNA结构中的任何损害是癌症和其他疾病进展的基本直接原因。 DNA损伤的因素可以归类为外源性和内源性因素。 在本文文章中,我们重点介绍了有关DNA的结构,功能和临床意义的证据支持的信息。 1。 引言DNA的发现可以追溯到1869年,当时一位名叫Friedrich Miescher的瑞士生物化学家正在研究其化学成分来源的白细胞。 他从干净的手术敷料中获得了这些白细胞。 尽管他在细胞的所有细胞器和结构中都是原始的,但他很快将其范围缩小到细胞核,因为在用酸治疗后,出现了他称为“核素”的沉淀物。 大多数分子生物科学学生都会在实验室中进行该实验的某种版本,在这些实验室中,它们将DNA与细胞分离。 DNA的优雅结构,从核苷酸到染色体,是使其充当遗传信息的载体的原因。3伊拉克库法大学药学学院,伊拉克库法大学4护理学院,摘要:脱氧核糖核酸(DNA)带有遗传性代码,这些代码由细胞翻译而成,可以同步核糖核酸(RNA)和多肽(RNA)和多肽,这些核酸(RNA)和多肽可以产生和表演VITARE VILATE和PERRACE VITAR。双螺旋结构是Watson和Crick提出的DNA的最多研究的模型。DNA作为遗传物质起作用的能力可以在细胞分裂过程中存储和进行,以使该信息加倍并传输到传入的一代。DNA结构中的任何损害是癌症和其他疾病进展的基本直接原因。DNA损伤的因素可以归类为外源性和内源性因素。在本文文章中,我们重点介绍了有关DNA的结构,功能和临床意义的证据支持的信息。1。引言DNA的发现可以追溯到1869年,当时一位名叫Friedrich Miescher的瑞士生物化学家正在研究其化学成分来源的白细胞。他从干净的手术敷料中获得了这些白细胞。尽管他在细胞的所有细胞器和结构中都是原始的,但他很快将其范围缩小到细胞核,因为在用酸治疗后,出现了他称为“核素”的沉淀物。大多数分子生物科学学生都会在实验室中进行该实验的某种版本,在这些实验室中,它们将DNA与细胞分离。DNA的优雅结构,从核苷酸到染色体,是使其充当遗传信息的载体的原因。其他研究人员后来进一步表征了“核素”,并将其更名为核酸,因为研究表明该核酸由嘌呤和嘧啶碱,糖和磷酸盐组成。核酸,包括确定四个碱基以及它们含有脱氧核糖核酸的发现 - 因此被称为脱氧核糖核酸(DNA)。发现形成DNA分子主链结构的含氮碱基是对:鸟嘌呤(g)的胞嘧啶(C)和与胸腺氨酸(T)相同量的腺苷(A)(Minchin&Lodge,2019)。但是这种复杂性并非一无所获。沃森(Watson)和克里克(Crick)在1953年的论文中揭示了两个关键方面,这些方面构成了这种美丽的设计:以互补的方式配对核苷酸碱基(与胺的腺嘌呤,胰鸟嘌呤的鸟嘌呤)和双螺旋(Watson&Crick,1953年)。结构DNA结构是众所周知的,许多几何参数被认为是它们的特征,这些参数包括:螺旋弯曲,凹槽宽度,骨干和糖苷扭转角,糖冰瓶,螺旋桨扭曲,螺旋桨扭曲,滚动,滚动,倾斜,倾斜度,螺旋式上升和旋转和扭曲(Sagenger,Sagenger,1984年)。如图(1)所示,脱氧核糖核酸是聚合分子。它是由识别为核苷酸的单体单元的重复而形成的。核苷酸由5-碳糖(脱氧核糖),氮基碱和一个或多个磷酸基团组成。但是,在通过这些充当构建基块的核苷酸形成的DNA中,将三个磷酸基团相互引入。(Lamprecht等,2015)。在此过程中丢失了两种磷酸盐;因此,最后,DNA链每个核苷酸具有一个磷酸基团。
1博士学位科学作家,纽约,纽约。2分子生物学与生物物理学研究所,苏黎世,苏黎世,瑞士。3分子病理研究所(IMP),维也纳生物中心和维也纳医科大学,奥地利维也纳。 4蛋白质加工科,结构生物学中心,癌症研究中心,国家癌症研究所,美国国家癌症研究所,马里兰州弗雷德里克。 5比米分子科学系,魏兹曼科学学院,以色列rehovot。 6马萨诸塞州波士顿哈佛医学院的细胞生物学系。 7植物与微生物生物学和创新基因组学研究所,加利福尼亚大学,加利福尼亚州伯克利分校。 8哈佛医学院,马萨诸塞州波士顿的病理学系,杨百翰和妇女医院。 9,玛格丽特癌症中心,大学卫生网络和医学生物物理学系,多伦多大学多伦多大学,加拿大安大略省。 10 Max Perutz Labs,维也纳大学,维也纳生物中心(VBC),维也纳,奥地利。 11基础医学科学研究所和癌细胞重编程中心分子医学系,挪威奥斯陆奥斯陆大学临床医学研究所。 12挪威奥斯陆大学医院癌症研究所分子细胞生物学系。 13 Sanford Burnham Prebys医学发现研究所,开发,衰老和再生计划,加利福尼亚州拉霍亚。 15 Casma Therapeutics,马萨诸塞州剑桥。 16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。3分子病理研究所(IMP),维也纳生物中心和维也纳医科大学,奥地利维也纳。4蛋白质加工科,结构生物学中心,癌症研究中心,国家癌症研究所,美国国家癌症研究所,马里兰州弗雷德里克。5比米分子科学系,魏兹曼科学学院,以色列rehovot。6马萨诸塞州波士顿哈佛医学院的细胞生物学系。7植物与微生物生物学和创新基因组学研究所,加利福尼亚大学,加利福尼亚州伯克利分校。8哈佛医学院,马萨诸塞州波士顿的病理学系,杨百翰和妇女医院。9,玛格丽特癌症中心,大学卫生网络和医学生物物理学系,多伦多大学多伦多大学,加拿大安大略省。10 Max Perutz Labs,维也纳大学,维也纳生物中心(VBC),维也纳,奥地利。11基础医学科学研究所和癌细胞重编程中心分子医学系,挪威奥斯陆奥斯陆大学临床医学研究所。 12挪威奥斯陆大学医院癌症研究所分子细胞生物学系。 13 Sanford Burnham Prebys医学发现研究所,开发,衰老和再生计划,加利福尼亚州拉霍亚。 15 Casma Therapeutics,马萨诸塞州剑桥。 16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。11基础医学科学研究所和癌细胞重编程中心分子医学系,挪威奥斯陆奥斯陆大学临床医学研究所。12挪威奥斯陆大学医院癌症研究所分子细胞生物学系。 13 Sanford Burnham Prebys医学发现研究所,开发,衰老和再生计划,加利福尼亚州拉霍亚。 15 Casma Therapeutics,马萨诸塞州剑桥。 16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。12挪威奥斯陆大学医院癌症研究所分子细胞生物学系。13 Sanford Burnham Prebys医学发现研究所,开发,衰老和再生计划,加利福尼亚州拉霍亚。15 Casma Therapeutics,马萨诸塞州剑桥。16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。14国家生物巨星国家实验室,CAS CAS卓越生物大分子中心,生物物理学研究所,中国科学院和生命科学学院,中国中国科学院,北京大学,中国人民共和国。17分子和细胞生物学,加利福尼亚大学,伯克利分校,加利福尼亚州伯克利。18孟加拉大学 - 大学 - 大学 - 大学 - 膜生物学的国家主要实验室,纽约大学生命科学联合中心,生命科学学院,北京北京大学,北京大学。19分子机器和信号传导部,德国马丁斯·麦克斯·普朗克生物化学研究所。20 Amgen,Inc。,千橡树,加利福尼亚州。21医学院和布赫曼分子生命科学学院生物化学研究所II,德国法兰克福歌德大学。22马萨诸塞州波士顿哈佛医学院Blavatnik研究所的细胞生物学系。23分子肿瘤学和早期发现生物化学,加利福尼亚州南旧金山的Genentech,Inc。。24布里斯托尔·迈尔斯·索斯(Bristol Myers Squibb),加利福尼亚州布里斯班。25弗里德里希·米舍(Friedrich Miescher)生物医学研究所,瑞士巴塞尔。26马萨诸塞州剑桥的麻省理工学院和哈佛大学研究所。27马萨诸塞州波士顿的达纳 - 法伯癌研究所医学肿瘤学系。28德国癌症研究中心(DKFZ)和国家肿瘤疾病中心(NCT)的转化医学肿瘤学系,德国海德堡。29生物物理学研究生计划,生物学系和加利福尼亚州斯坦福大学斯坦福大学遗传学系。30 Biohub,加利福尼亚州旧金山。 31 Cryoem and Bioimaging,SSRL,SLAC国家加速器实验室,加利福尼亚州Menlo Park。 32分子,细胞和发育生物学系,文学学院,科学学院和艺术学院,密歇根大学,密歇根州安阿伯。 33德国神经退行性疾病中心(DZNE)和德国图宾根大学的跨学院生物化学研究所。 34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。 35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳30 Biohub,加利福尼亚州旧金山。31 Cryoem and Bioimaging,SSRL,SLAC国家加速器实验室,加利福尼亚州Menlo Park。32分子,细胞和发育生物学系,文学学院,科学学院和艺术学院,密歇根大学,密歇根州安阿伯。 33德国神经退行性疾病中心(DZNE)和德国图宾根大学的跨学院生物化学研究所。 34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。 35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳32分子,细胞和发育生物学系,文学学院,科学学院和艺术学院,密歇根大学,密歇根州安阿伯。33德国神经退行性疾病中心(DZNE)和德国图宾根大学的跨学院生物化学研究所。 34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。 35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳33德国神经退行性疾病中心(DZNE)和德国图宾根大学的跨学院生物化学研究所。34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。 35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳
1博士学位科学作家,纽约,纽约。2分子生物学与生物物理学研究所,苏黎世,苏黎世,瑞士。3分子病理研究所(IMP),维也纳生物中心和维也纳医科大学,奥地利维也纳。 4蛋白质加工科,结构生物学中心,癌症研究中心,国家癌症研究所,美国国家癌症研究所,马里兰州弗雷德里克。 5比米分子科学系,魏兹曼科学学院,以色列rehovot。 6马萨诸塞州波士顿哈佛医学院的细胞生物学系。 7植物与微生物生物学和创新基因组学研究所,加利福尼亚大学,加利福尼亚州伯克利分校。 8哈佛医学院,马萨诸塞州波士顿的病理学系,杨百翰和妇女医院。 9,玛格丽特癌症中心,大学卫生网络和医学生物物理学系,多伦多大学多伦多大学,加拿大安大略省。 10 Max Perutz Labs,维也纳大学,维也纳生物中心(VBC),维也纳,奥地利。 11基础医学科学研究所和癌细胞重编程中心分子医学系,挪威奥斯陆奥斯陆大学临床医学研究所。 12挪威奥斯陆大学医院癌症研究所分子细胞生物学系。 13 Sanford Burnham Prebys医学发现研究所,开发,衰老和再生计划,加利福尼亚州拉霍亚。 15 Casma Therapeutics,马萨诸塞州剑桥。 16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。3分子病理研究所(IMP),维也纳生物中心和维也纳医科大学,奥地利维也纳。4蛋白质加工科,结构生物学中心,癌症研究中心,国家癌症研究所,美国国家癌症研究所,马里兰州弗雷德里克。5比米分子科学系,魏兹曼科学学院,以色列rehovot。6马萨诸塞州波士顿哈佛医学院的细胞生物学系。7植物与微生物生物学和创新基因组学研究所,加利福尼亚大学,加利福尼亚州伯克利分校。8哈佛医学院,马萨诸塞州波士顿的病理学系,杨百翰和妇女医院。9,玛格丽特癌症中心,大学卫生网络和医学生物物理学系,多伦多大学多伦多大学,加拿大安大略省。10 Max Perutz Labs,维也纳大学,维也纳生物中心(VBC),维也纳,奥地利。11基础医学科学研究所和癌细胞重编程中心分子医学系,挪威奥斯陆奥斯陆大学临床医学研究所。 12挪威奥斯陆大学医院癌症研究所分子细胞生物学系。 13 Sanford Burnham Prebys医学发现研究所,开发,衰老和再生计划,加利福尼亚州拉霍亚。 15 Casma Therapeutics,马萨诸塞州剑桥。 16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。11基础医学科学研究所和癌细胞重编程中心分子医学系,挪威奥斯陆奥斯陆大学临床医学研究所。12挪威奥斯陆大学医院癌症研究所分子细胞生物学系。 13 Sanford Burnham Prebys医学发现研究所,开发,衰老和再生计划,加利福尼亚州拉霍亚。 15 Casma Therapeutics,马萨诸塞州剑桥。 16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。12挪威奥斯陆大学医院癌症研究所分子细胞生物学系。13 Sanford Burnham Prebys医学发现研究所,开发,衰老和再生计划,加利福尼亚州拉霍亚。15 Casma Therapeutics,马萨诸塞州剑桥。16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。14国家生物巨星国家实验室,CAS CAS卓越生物大分子中心,生物物理学研究所,中国科学院和生命科学学院,中国中国科学院,北京大学,中国人民共和国。17分子和细胞生物学,加利福尼亚大学,伯克利分校,加利福尼亚州伯克利。18孟加拉大学 - 大学 - 大学 - 大学 - 膜生物学的国家主要实验室,纽约大学生命科学联合中心,生命科学学院,北京北京大学,北京大学。19分子机器和信号传导部,德国马丁斯·麦克斯·普朗克生物化学研究所。20 Amgen,Inc。,千橡树,加利福尼亚州。21医学院和布赫曼分子生命科学学院生物化学研究所II,德国法兰克福歌德大学。22马萨诸塞州波士顿哈佛医学院Blavatnik研究所的细胞生物学系。23分子肿瘤学和早期发现生物化学,加利福尼亚州南旧金山的Genentech,Inc。。24布里斯托尔·迈尔斯·索斯(Bristol Myers Squibb),加利福尼亚州布里斯班。25弗里德里希·米舍(Friedrich Miescher)生物医学研究所,瑞士巴塞尔。26马萨诸塞州剑桥的麻省理工学院和哈佛大学研究所。27马萨诸塞州波士顿的达纳 - 法伯癌研究所医学肿瘤学系。28德国癌症研究中心(DKFZ)和国家肿瘤疾病中心(NCT)的转化医学肿瘤学系,德国海德堡。29生物物理学研究生计划,生物学系和加利福尼亚州斯坦福大学斯坦福大学遗传学系。30 Biohub,加利福尼亚州旧金山。 31 Cryoem and Bioimaging,SSRL,SLAC国家加速器实验室,加利福尼亚州Menlo Park。 32分子,细胞和发育生物学系,文学学院,科学学院和艺术学院,密歇根大学,密歇根州安阿伯。 33德国神经退行性疾病中心(DZNE)和德国图宾根大学的跨学院生物化学研究所。 34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。 35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳30 Biohub,加利福尼亚州旧金山。31 Cryoem and Bioimaging,SSRL,SLAC国家加速器实验室,加利福尼亚州Menlo Park。32分子,细胞和发育生物学系,文学学院,科学学院和艺术学院,密歇根大学,密歇根州安阿伯。 33德国神经退行性疾病中心(DZNE)和德国图宾根大学的跨学院生物化学研究所。 34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。 35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳32分子,细胞和发育生物学系,文学学院,科学学院和艺术学院,密歇根大学,密歇根州安阿伯。33德国神经退行性疾病中心(DZNE)和德国图宾根大学的跨学院生物化学研究所。 34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。 35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳33德国神经退行性疾病中心(DZNE)和德国图宾根大学的跨学院生物化学研究所。34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。 35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳
1博士学位科学作家,纽约,纽约。2分子生物学与生物物理学研究所,苏黎世,苏黎世,瑞士。3分子病理研究所(IMP),维也纳生物中心和维也纳医科大学,奥地利维也纳。 4蛋白质加工科,结构生物学中心,癌症研究中心,国家癌症研究所,美国国家癌症研究所,马里兰州弗雷德里克。 5比米分子科学系,魏兹曼科学学院,以色列rehovot。 6马萨诸塞州波士顿哈佛医学院的细胞生物学系。 7植物与微生物生物学和创新基因组学研究所,加利福尼亚大学,加利福尼亚州伯克利分校。 8哈佛医学院,马萨诸塞州波士顿的病理学系,杨百翰和妇女医院。 9,玛格丽特癌症中心,大学卫生网络和医学生物物理学系,多伦多大学多伦多大学,加拿大安大略省。 10 Max Perutz Labs,维也纳大学,维也纳生物中心(VBC),维也纳,奥地利。 11基础医学科学研究所和癌细胞重编程中心分子医学系,挪威奥斯陆奥斯陆大学临床医学研究所。 12挪威奥斯陆大学医院癌症研究所分子细胞生物学系。 13 Sanford Burnham Prebys医学发现研究所,开发,衰老和再生计划,加利福尼亚州拉霍亚。 15 Casma Therapeutics,马萨诸塞州剑桥。 16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。3分子病理研究所(IMP),维也纳生物中心和维也纳医科大学,奥地利维也纳。4蛋白质加工科,结构生物学中心,癌症研究中心,国家癌症研究所,美国国家癌症研究所,马里兰州弗雷德里克。5比米分子科学系,魏兹曼科学学院,以色列rehovot。6马萨诸塞州波士顿哈佛医学院的细胞生物学系。7植物与微生物生物学和创新基因组学研究所,加利福尼亚大学,加利福尼亚州伯克利分校。8哈佛医学院,马萨诸塞州波士顿的病理学系,杨百翰和妇女医院。9,玛格丽特癌症中心,大学卫生网络和医学生物物理学系,多伦多大学多伦多大学,加拿大安大略省。10 Max Perutz Labs,维也纳大学,维也纳生物中心(VBC),维也纳,奥地利。11基础医学科学研究所和癌细胞重编程中心分子医学系,挪威奥斯陆奥斯陆大学临床医学研究所。 12挪威奥斯陆大学医院癌症研究所分子细胞生物学系。 13 Sanford Burnham Prebys医学发现研究所,开发,衰老和再生计划,加利福尼亚州拉霍亚。 15 Casma Therapeutics,马萨诸塞州剑桥。 16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。11基础医学科学研究所和癌细胞重编程中心分子医学系,挪威奥斯陆奥斯陆大学临床医学研究所。12挪威奥斯陆大学医院癌症研究所分子细胞生物学系。 13 Sanford Burnham Prebys医学发现研究所,开发,衰老和再生计划,加利福尼亚州拉霍亚。 15 Casma Therapeutics,马萨诸塞州剑桥。 16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。12挪威奥斯陆大学医院癌症研究所分子细胞生物学系。13 Sanford Burnham Prebys医学发现研究所,开发,衰老和再生计划,加利福尼亚州拉霍亚。15 Casma Therapeutics,马萨诸塞州剑桥。16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。14国家生物巨星国家实验室,CAS CAS卓越生物大分子中心,生物物理学研究所,中国科学院和生命科学学院,中国中国科学院,北京大学,中国人民共和国。17分子和细胞生物学,加利福尼亚大学,伯克利分校,加利福尼亚州伯克利。18孟加拉大学 - 大学 - 大学 - 大学 - 膜生物学的国家主要实验室,纽约大学生命科学联合中心,生命科学学院,北京北京大学,北京大学。19分子机器和信号传导部,德国马丁斯·麦克斯·普朗克生物化学研究所。20 Amgen,Inc。,千橡树,加利福尼亚州。21医学院和布赫曼分子生命科学学院生物化学研究所II,德国法兰克福歌德大学。22马萨诸塞州波士顿哈佛医学院Blavatnik研究所的细胞生物学系。23分子肿瘤学和早期发现生物化学,加利福尼亚州南旧金山的Genentech,Inc。。24布里斯托尔·迈尔斯·索斯(Bristol Myers Squibb),加利福尼亚州布里斯班。25弗里德里希·米舍(Friedrich Miescher)生物医学研究所,瑞士巴塞尔。26马萨诸塞州剑桥的麻省理工学院和哈佛大学研究所。27马萨诸塞州波士顿的达纳 - 法伯癌研究所医学肿瘤学系。28德国癌症研究中心(DKFZ)和国家肿瘤疾病中心(NCT)的转化医学肿瘤学系,德国海德堡。29生物物理学研究生计划,生物学系和加利福尼亚州斯坦福大学斯坦福大学遗传学系。30 Biohub,加利福尼亚州旧金山。 31 Cryoem and Bioimaging,SSRL,SLAC国家加速器实验室,加利福尼亚州Menlo Park。 32分子,细胞和发育生物学系,文学学院,科学学院和艺术学院,密歇根大学,密歇根州安阿伯。 33德国神经退行性疾病中心(DZNE)和德国图宾根大学的跨学院生物化学研究所。 34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。 35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳30 Biohub,加利福尼亚州旧金山。31 Cryoem and Bioimaging,SSRL,SLAC国家加速器实验室,加利福尼亚州Menlo Park。32分子,细胞和发育生物学系,文学学院,科学学院和艺术学院,密歇根大学,密歇根州安阿伯。 33德国神经退行性疾病中心(DZNE)和德国图宾根大学的跨学院生物化学研究所。 34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。 35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳32分子,细胞和发育生物学系,文学学院,科学学院和艺术学院,密歇根大学,密歇根州安阿伯。33德国神经退行性疾病中心(DZNE)和德国图宾根大学的跨学院生物化学研究所。 34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。 35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳33德国神经退行性疾病中心(DZNE)和德国图宾根大学的跨学院生物化学研究所。34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。 35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳
DNA提取自1869年弗里德里希·米舍(Friedrich Miescher)首次试图隔离它以来,它已经走了很长一段路,意外地发明了一种核酸隔离方法,后来其他人会完善。该过程涉及分解细胞膜和核信封以获得DNA,这对于PCR,DNA克隆,测序和电泳等各种分子生物学应用至关重要。取决于样本类型 - 需要植物,血液,细菌或其他 - 需要不同的提取方法,每种方法都有自己的手术,以确保DNA的所需纯度和数量。从苯酚 - 氯仿等醇到蛋白酶K,CTAB,自旋柱,磁珠等等,存在各种技术,每个技术都基于样品的特定要求选择。DNA提取的故事是连续的创新和精致之一,像Meselson和Stahl这样的先驱在1958年建立了全功能程序,而其他人则随着时间的推移贡献了他们的方法。从细胞中提取DNA的过程涉及三个主要步骤:细胞裂解,沉淀和溶解DNA。所使用的化学或组合的类型可能会根据目标和细胞类型而有所不同。对于柔软的细胞壁,如在结核分枝杆菌中发现的,用简单的裂解缓冲液加热是有效的。然而,较硬的细胞壁需要机械,化学和酶促方法来提取DNA。基于化学的DNA提取方法是基于溶液的,涉及各种有机和无机溶液。这些包括SDS,CTAB,苯酚,氯仿和硫氰酸鸟酯。所有程序的主要步骤是细胞裂解,降水和洗脱。基于溶液的(化学)DNA提取进一步分为基于有机溶剂的和基于无机溶剂的方法。有机溶剂(如苯酚和氯仿)以前已被使用,但由于危险而灰心。相反,采用了更安全的替代方案,例如Triton X100和EDTA。不同的化学物质有特定目的;蛋白酶K等酶分解蛋白质直接靶向氨基酸连接。DNA提取过程的有效性可能受细胞类型的影响以及某些化合物或化学物质组合的使用。在冷链中,尽管有一些缺点,但基于蛋白酶K的DNA分离方法还是有效的方法。此过程的一个问题是酶的稳定性降低,随着时间的流逝而降低。使用无机溶液(例如氯化钠和乙酸钾)与蛋白酶K结合使用的盐溶液。但是,提取的DNA的纯度可能是一个问题,因为尽管获得了足够的质量,但收益率可能不会令人满意。苯酚 - 氯仿 - 异氧化酒精法(PCI)是提取DNA的另一种流行技术。它使用液化缓冲液,苯酚和氯仿对蛋白质和破坏细胞,从而产生出色的产率和纯度。可以通过使用现成的DNA提取缓冲区来修改此方法,从而快速而简单。高质量的DNA产量和简单操作系统对于准确的DNA分析至关重要。相反,基于二氧化硅的DNA提取方法提供了一种独特的方法,依赖于二氧化硅和DNA相互作用的独特化学。带正电荷的二氧化硅颗粒在离心过程中与带负电荷的DNA结合,从而允许高质量的DNA产量和易于操作。由于其简单性和有效性,该市售技术已在诊断实验室中被广泛接受。为了验证提取的DNA,可以使用溴化乙锭或其他与DNA在UV光下反应的荧光染料在琼脂糖凝胶上电泳。通过计算260 nm和280 nm波长的吸光度来测量DNA的纯度。确定DNA纯度的最常见方法是A260/A280比率,对于优质DNA,应在1.7-2.0之间。较低的比率表明存在更多的污染物。荧光测量是确定DNA产量和浓度的另一种流行方法,它由于其广泛的可用性和比吸光度方法更高的灵敏度。也可以使用二苯胺(DPA)指示器确认DNA的存在,该指标涉及DNA化学水解。与分光光度计在600 nm处的吸光度强度也可以通过将DNA浓度与已知DNA浓度的标准曲线进行比较来确定DNA浓度。已开发和应用多种用于DNA提取的方法,包括用于传染病的护理核酸测试和人类DNA提取方法。方法的选择取决于DNA的特定应用和所需的质量。
DNA 是生命的基本蓝图,由一种长链分子组成,其中包含构建和维持所有生物体的指令。它存在于几乎所有细胞中,能够产生蛋白质并在代际之间传递遗传信息。这个来自鲑鱼精子的 DNA 样本属于德国图宾根大学。了解 DNA 的结构和功能彻底改变了疾病研究、遗传易感性评估、诊断和药物配方。它对每个个体都是独一无二的,这使它成为法医科学、识别犯罪、失踪人员和亲生父母的重要工具。在农业中,DNA 有助于改良牲畜和植物。DNA 的发现可以追溯到 1869 年,当时弗里德里希·米歇尔从白细胞中分离出核蛋白。他观察到它在各种组织中的存在并发现了它的遗传作用。阿尔布雷希特·科塞尔后来将其重新命名为脱氧核糖核酸 (DNA) 并分析了它的化学成分。DNA 的转变始于 20 世纪 30 年代初,当时奥斯瓦尔德·艾弗里在纽约洛克菲勒研究所进行了研究。他发现一种细菌与同种菌株的死细胞混合后会转变成有毒形态。弗雷德·格里菲斯于 1928 年首次观察到这一现象。艾弗里的工作以及柯林·麦克劳德和麦克林·麦卡锡的工作表明,这种转变与 DNA 有关。尽管当时并未得到普遍接受,但艾弗里的发现激发了人们对 DNA 的兴趣。几年后,阿尔弗雷德·赫尔希和玛莎·赫尔希于 1952 年进行的实验证实了 DNA 携带遗传信息。到了 20 世纪 50 年代,研究人员开始研究 DNA 的结构以了解其功能。罗莎琳德·富兰克林和莫里斯·威尔金斯与弗朗西斯·克里克和詹姆斯·沃森于 1953 年揭示了双螺旋模型。该结构由两条相互缠绕的链组成,具有四种互补的核苷酸:腺嘌呤、胞嘧啶、鸟嘌呤和胸腺嘧啶。双螺旋结构允许重建遗传信息,从而实现遗传性状的传递。 DNA 分析对于理解生命的生物机制和由基因突变引起的疾病至关重要。DNA 测序和 PCR 等技术使分析分子和识别基因突变成为可能。科学家还可以操纵和构建新形式的 DNA,称为重组 DNA 或基因克隆,这对于大规模药物生产和基因治疗至关重要。随着时间的推移,对核酸、蛋白质和非蛋白质成分的发现和理解也在不断发展。出生于加拿大哈利法克斯的 Oswald T Avery 发现了有丝分裂细胞分裂和染色体的过程。理查德·阿尔特曼将核蛋白改名为核酸,而约翰·弗里德里希·米歇尔去世。莱纳斯·鲍林引入了遗传学的概念,塞韦罗·奥乔亚诞生。亚历山大·托德创造了“基因”一词,保罗·扎梅克尼克描述了 DNA 的构成要素。所罗门·施皮格尔曼绘制了一条染色体图谱,弗朗西斯·克里克、莫里斯·威尔金斯、亚瑟·科恩伯格、弗雷德里克·桑格、罗莎琳·富兰克林、伊芙琳·威特金、西摩·本泽尔、哈尔·戈宾德·科拉纳、约翰·史密斯、约书亚·莱德伯格、TB·约翰逊和 RD·科格希尔也为该领域做出了重大贡献。其他值得注意的事件包括 PB·约翰逊和 RD·科格希尔检测到甲基化胞嘧啶衍生物是硫酸水解结核酸的副产物,但其他科学家很难复制他们的结果。保罗·伯格、马歇尔·W·尼伦伯格、詹姆斯·D·沃森、吴雷、丹尼尔·内森斯、沃纳·阿伯、富兰克林·斯塔尔、贝弗利·格里芬、芭芭拉·麦克林托克、汉密尔顿·O·史密斯、沃尔特·吉尔伯特、斯坦利·诺曼·科恩、赫伯特·博耶、大卫·巴尔的摩、约翰·E·苏尔斯顿、埃尔温·薛定谔、理查德·J·罗伯茨、克雷格·文特尔诞生。四种碱基比例的一致性是人们不断发现的。镰状细胞病被发现是基因突变的结果。埃丝特·莱德伯格对λ噬菌体有了突破性的发现。纯化的DNA和细胞DNA显示出螺旋结构,标志着首次观察到细菌对病毒的改造。DNA在保存遗传密码方面比蛋白质更重要这一点变得清晰起来。DNA的双螺旋结构通过三篇《自然》杂志发表的文章得到证实。莱纳斯·鲍林因其在氨基酸方面的工作获得了诺贝尔奖。弗雷德里克·桑格完成了胰岛素氨基酸的完整序列,而病毒被重构,RNA被发现。信使RNA首次被发现,DNA聚合酶被分离纯化,用于复制DNA。维克多·英格拉姆利用桑格测序技术破解了镰状细胞性贫血背后的遗传密码。弗朗西斯·克里克提出了遗传物质控制蛋白质合成的主要功能。首次实现了体外DNA合成。桑格获得了他的第一个诺贝尔化学奖,为理解基因调控和蛋白质合成步骤铺平了道路。美国国家生物医学研究基金会的成立标志着核酸测序新时代的开始。芭芭拉·麦克林托克发现了“跳跃基因”,同时破解了编码机制。桑格的研究导致了限制酶的发现,紫外线诱变可以通过暗曝光逆转。转移RNA成为第一个被测序的核酸分子,全面的蛋白质序列发表在《蛋白质序列和结构图集》上。遗传密码首次被总结,沃纳·阿伯尔预测了限制酶作为实验室工具的使用。发现了连接酶(一种促进 DNA 链连接的酶),并开发了自动蛋白质测序仪。从杂交细胞中分离出染色体,并组装了功能性噬菌体基因组。发表了 PCR 原理,并从黄石温泉中分离出一种新细菌。产生了生成重组 DNA 分子的概念。在分子生物学的早期,取得了一些重要的里程碑,为现代基因工程铺平了道路。关键事件包括: - 分离和鉴定人类或其他哺乳动物染色体的第一个限制性酶。 - 发现和分离逆转录酶。 - 发表了一种称为修复复制的过程,用于通过聚合酶合成短 DNA 双链和单链 DNA。 - 构建第一个质粒细菌克隆载体。 - 报道噬菌体 lambda DNA 的完整序列。 - 由于安全问题,Janet Mertz 在细菌中克隆重组 DNA 的实验被叫停。 - 首次发表了使用限制性酶切割 DNA 的实验。 - 关于重组 DNA 技术的生物危害的讨论公开化。 - 生成了第一个重组 DNA。 - Janet Mertz 和 Ronald Davis 发表了一种易于使用的重组 DNA 构建技术,该技术表明,当用限制性酶 EcoRI 切割 DNA 时,DNA 会产生粘性末端。 - 报道了 24 个碱基对的测序,以及细菌中 DNA 修复机制的发现 - SOS 反应。 - 开发了 Ames 测试来识别破坏 DNA 的化学物质。 - 首次举办人类基因图谱国际研讨会。 - DNA 首次成功地从一种生命形式转移到另一种生命形式。 - 重组基因研究开始受到监管。 - 重组 DNA 在大肠杆菌中成功复制,随后呼吁暂时停止基因工程,直到采取措施处理潜在的生物危害。 - Mertz 完成了她的博士学位,Sanger 和 Coulson 发表了他们的 DNA 测序加减法。 - DNA 甲基化被认为是胚胎中 X 染色体沉默的机制,并被认为是控制高等生物基因表达的重要机制。 - 阿西洛马会议呼吁自愿暂停基因工程研究。 - 酵母基因首次在大肠杆菌中表达。 - 原癌基因被认为是正常细胞遗传机制的一部分,在发育细胞中发挥着重要作用。 - NIH 发布了重组 DNA 实验指南。 - 人类生长激素经基因工程改造。 - 确定噬菌体 phi X174 DNA 的完整序列。 - 编写了第一个帮助汇编和分析 DNA 序列数据的计算机程序。 - 发表了两种不同的 DNA 测序方法,可以快速对长片段 DNA 进行测序。 - 在大肠杆菌中产生人类胰岛素。 - 诺贝尔奖表彰限制性酶的发现及其在分子遗传学问题中的应用。 - Biogen 为克隆乙型肝炎 DNA 和抗原的技术提交了初步的英国专利。- 爱丁堡大学科学家克隆出第一条 Epstein Barr 病毒 DNA 片段。 - 巴斯德研究所科学家报告成功分离并克隆大肠杆菌中的乙肝病毒 DNA 片段。 - 加州大学旧金山分校科学家宣布成功在大肠杆菌中克隆并表达 HBsAg。 - Biogen 申请欧洲专利,以克隆显示乙肝抗原特异性的 DNA 片段。 这一年,基因工程和 DNA 测序取得了重大进展。第一个基因克隆专利获得批准,为进一步的研究铺平了道路。塞萨尔·米尔斯坦提出使用重组 DNA 来改进单克隆抗体,而桑格获得了他的第二个诺贝尔化学奖。欧洲分子生物学实验室召开了计算和 DNA 序列会议,标志着该领域的一个里程碑。多瘤病毒 DNA 被测序,加州大学旧金山分校的科学家发表了一种在癌细胞中培养 HBsAg 抗原的方法。科学家报告首次成功开发转基因小鼠,同时世界上最大的核酸序列数据库通过电话网络免费开放。第一批转基因植物和小鼠被报道出来,展示了基因工程的威力。研究表明,Upjohn 开发的细胞毒性药物阿扎胞苷可抑制 DNA 甲基化。NIH 同意在 5 年内提供 320 万美元来建立和维护核酸序列数据库。第一种重组 DNA 药物获得批准,在肿瘤样本的胞嘧啶-鸟嘌呤 (CpG) 岛上发现 DNA 甲基化普遍缺失。聚合酶链反应 (PCR) 技术开始被开发作为扩增 DNA 的手段。PCR 实验的结果开始被报道,同时开发了针对乙型肝炎的转基因疫苗,并揭示了第一个基因指纹。嵌合单克隆抗体被开发出来,为更安全、更有效的单克隆抗体疗法奠定了基础。卡罗尔·格雷德 (Carol Greider) 和伊丽莎白·布莱克本 (Elizabeth Blackburn) 宣布发现端粒酶,这是一种在染色体末端添加额外 DNA 碱基的酶。DNA 甲基化被发现发生在称为 CpG 岛的特定 DNA 片段上,而 Mullis 和 Cetus 公司则为 PCR 技术申请了专利。DNA 指纹识别原理被提出,第一起使用 DNA 指纹识别解决的法律案件被解决。聚合酶链式反应 (PCR) 技术被发表,同时还有人类基因组测序计划。开发了一种用于自动进行 DNA 测序的机器,并创建了第一个人源化单克隆抗体。一种针对乙肝的基因工程疫苗获得批准,而干扰素被批准用于治疗毛细胞白血病。美国建立了监管框架来规范生物技术产品的开发和引进。比利时和美国批准了 Engerix-B 等基因工程乙肝疫苗。小规模临床试验的结果公布,包括一项针对输血后慢性乙型肝炎的重组干扰素-α疗法的试验。mRNA被封装到由阳离子脂质制成的脂质体中,并注射到小鼠细胞中,产生蛋白质。Campath-1H被制造出来——这是第一个临床上有用的人源化单克隆抗体。美国国会资助基因组测序,同时开发了一种快速搜索计算机程序来识别新序列中的基因。第一个催化甲基转移到DNA的哺乳动物酶(DNA甲基转移酶,DNMT)被克隆。比利时和美国批准了基因工程乙型肝炎疫苗,标志着基因工程和DNA测序的重大进步。法国和美国的基因突破导致癌症研究、基因测序和DNA分析方面的重大发现。乙型肝炎和囊性纤维化等疾病的疫苗和治疗方法的批准标志着医学科学的重大进步。DNA甲基化研究揭示了其与癌症发展和进展的联系。人类基因组计划正式启动,旨在对整个人类基因组进行测序,并在对包括细菌、病毒和哺乳动物在内的各种生物的基因组进行测序方面取得了重大里程碑。创新的 DNA 测序技术彻底改变了我们对基因进化、疾病诊断和个性化治疗的理解。研究人员已成功应用该技术研究肺炎链球菌对疫苗应用的快速适应。MinION 手持式 DNA 测序仪还被用于识别新生儿重症监护室中 MRSA 爆发的源头。除了在医学上的应用外,DNA 测序在了解神经系统疾病状况和识别防止生物衰老的罕见基因突变方面发挥了至关重要的作用。该技术还被用于预测哪些女性可以从化疗中受益,以及扫描婴儿和儿童的罕见疾病。此外,蛋白质结构的研究对于开发各种疾病的有效治疗方法至关重要。蛋白质由长链氨基酸组成,这些氨基酸扭曲并弯曲成独特的 3D 形状,使它们能够与其他分子相互作用并引发生物反应。蛋白质的形状可能因一个氨基酸的变化而改变,从而导致危及生命的疾病。了解蛋白质结构已导致医学领域取得重大突破,包括发现 HIV 蛋白酶结构,这有助于科学家设计有效的艾滋病治疗方法。此外,这些知识使研究人员能够识别致病病毒和细菌的致命弱点,为更有针对性和更有效的治疗铺平了道路。发现 HIV 蛋白酶的形状对于了解它如何感染细胞至关重要,最终导致开发出蛋白酶抑制剂等有效药物。这些突破将艾滋病毒治疗从死刑变成了可控的疾病,使人们能够长期与病毒共存。然而,艾滋病毒以进化和适应而闻名,随着时间的推移,一些治疗方法的效果会降低。研究人员目前正在研究新一代艾滋病毒蛋白酶抑制剂,以对抗这些耐药病毒株。在相关进展中,科学家们已经确定了艾滋病毒表面的一个不变区域,人类抗体可以靶向该区域,这有望阻止全球近 90% 的艾滋病毒株。这一发现为改进疫苗设计和可能改变一系列疾病生活的治疗方法铺平了道路。基于这些发现,研究人员正在探索对抗流感病毒的新方法,并在临床前试验中取得了令人鼓舞的结果。这项研究的更广泛影响可能导致更有效、更方便、副作用更少的各种医疗状况的治疗方法。
