丹尼斯·米格利尼(Denis Migliorini)教授在斯特拉斯堡大学医院完成了内科研究生培训。然后,他搬到了日内瓦大学医院(Hug),在那里他在Pierre-Yves Dietrich教授的指导下完成了医学肿瘤学的研究生培训。从2015年到2016年,他成功完成了神经肿瘤学的临床研究金。他拥有日内瓦大学(Unige)的临床试验管理中的DA,并成为了几项早期试验的首席研究员,测试了各种抗肿瘤免疫疗法方法,包括用于治疗胶质母细胞瘤的肽疫苗。从2017年到2019年,他在宾夕法尼亚大学的蜂窝免疫疗法中心,在卡尔·六月教授和艾弗里·波西教授的实验室中进行了博士后奖学金。接受了合成生物学和T细胞工程的培训,使CAR-T细胞技术的发展学科。在2019年,他被授予瑞士桥基金会奖,以表彰他确定工程细胞疗法的神经毒性机制的工作。于2020年返回瑞士,被任命为Unige医学院医学系的助理教授,并担任ISREC脑肿瘤免疫学主席。在拥抱中,他是一名主治医生,神经肿瘤科的负责人和脑肿瘤生物库的临床协调员。Migliorini教授是Onco-Herasology(CRTOH)指导委员会转化研究中心的成员
这是:最终的同行评审的手稿:Villa S. M.,Maturi M.,Santaniello T.,Migliorini L.,Locatelli E.,Franchini M.,Milani M.
15。Hilf,N.,Kuttruff-Coqui,S.,Frenzel,K.,Bukur,V.,Stevanović,S.,Gouttefangeas,J.,Platten,M.,Tabatabai,G. Ges,A.,Kreiter,S.,Von Deimling,A.,Skardelly,M.,Migliorini,D.,Kroep,J.R.,Idorn,M.,Rodon,J.,Piró,J.,Poulsen,H.S. Iesel,K.,Derhovanessian,E.,Rusch,E.,Bunse,L.,Song,J.,Heesch,S.,Wagner,J.,Kemmer-Brück,A. ,Maurer,D.,Weinschenk,T.,Reinhardt,J.,Huber,J.,Rammensee,H.-G.,Singh-Jasuja,H.,Sahin,U. &Wick,W.针对新诊断的胶质母细胞瘤进行积极个性化疫苗接种试验。自然565,240–245(2019年)。
Massimo Migliorini LINKS,意大利都灵 Jenny Sjåstad Hagen Jadranka Mihaljevi ć 黑山水文气象学和地震学研究所,黑山波德戈里察 Jaroslav Mysiak 风险评估和适应策略 (RAAS), CCMC@Ca' Foscari 欧洲-地中海气候变化中心,Ca' Foscari 威尼斯大学,意大利威尼斯 Jean-Louis Rossi 科西嘉大学,法国科尔特 Alexander Siegmund 德国海德堡教育大学地理系 Khachatur Meliksetian亚美尼亚国家科学院地质科学研究所,亚美尼亚埃里温, Debarati Guha Sapir 灾害流行病学研究中心 (CRED),鲁汶天主教大学公共卫生学院,比利时布鲁塞尔
贡献者Res4africa基金会:Dario Garofalo,Paolo Cutrone,Cristiana Lisi Afry Management Consulting:Gaia Stigliani,Fabio Giovanni parisi cesi:Bruno Cova,Silvia Corigliano,Silvia Corigliano,Luca Migliorini grupo Mercados culferanco fruranco coolla consura laura laaa laa laa laa laa laa se se: Baqueriza, Erick Amkoa Prysmian Group: Ilhan Ozturk, Xavier Vallez RINA: Laura Severino, Manuela Gussoni, Filippo Cirilli Special thanks to all partners and experts who took the time to read and contribute to this report: Enel Green Power : Filippo Bartoloni, Hammi Ibtissem, David Armaroli, Tommaso Grisi Res4africa基金会:Rima Jreich该文档是作为Res4africa基金会的独立分析准备的。我们不接受与本文档有关的责任(包括过失)。在引用原始源的条件下,允许引用,删节或复制此工作。Res4africa基金会及其合作伙伴©2023 Res4africa Foundation。保留所有权利。
瑞士成人胶质母细胞瘤患者的下一代测序:多中心决策分析 Zeitlberger AM 1 、Putora PM 2 、Hofer S 3 、Schucht P 4 、Migliorini D 5 、Hottinger AF 6 、Roelcke U 7 、Läubli H 8,9 、Spina P 10 、Bozinov O 1 、Weller M 3 、Neidert MC 1 、Hundsberger T 11,12 1 瑞士圣加仑州立医院神经外科部 2 瑞士圣加仑州立医院放射肿瘤科 3 瑞士苏黎世苏黎世大学医院神经内科 4 瑞士伯尔尼大学医院神经外科部 5 瑞士日内瓦日内瓦大学医院肿瘤科瑞士洛桑大学神经科学和肿瘤学系 7 瑞士卢塞恩州立医院神经病学系 8 瑞士巴塞尔大学医院肿瘤医学科治疗诊断学系 9 瑞士巴塞尔大学生物医学系癌症免疫疗法系 10 瑞士提契诺州立医院病理学研究所 11 瑞士圣加仑州立医院神经病学系 12 瑞士圣加仑州立医院血液学/肿瘤学系 通讯作者:PD Dr. med. Thomas Hundsberger 神经病学系 Rorschacher Strasse 95 9007 瑞士圣加仑 thomas.hundsberger@kssg.ch 电话:0041 71 494 3095 ORCID iD:0000-0002-4419-2767 致谢:我们感谢当地跨学科 CNS 肿瘤委员会的所有成员为本次研究提供数据。
2009 年 6 月 11 日至 12 日,联合国统计司怀伊城小组第二次会议在罗马举行,会议的主题是“农村发展和农业家庭收入统计”。为期两天的会议提出了三个主要议题并进行了深入讨论:不断变化的农村模式、新出现的问题和数据需求;农村统计的创新、新工具和新成果;不同发展水平国家农村发展和家庭收入统计的具体问题。怀伊城小组会议的目的是将来自世界各地的统计局、机构和大学、统计数据提供者和用户的农村发展专家聚集在一起。会议形式结合了正式演讲、全体会议和平行会议以及科学和操作讨论。26 位发言人和众多与会者在罗马会议上讨论了上述主题。农村发展是发达国家和发展中国家都十分关注的问题,尽管未来和具体问题可能有所不同。发展中国家要应对贫困问题以及从农村地区向城市地区和/或富裕国家的迁移。对于发达国家来说,粮食安全、经济和社会稳定以及环境政策目标才是更受关注的:简而言之,就是发展的“可持续性”。第二次会议首次考虑了农村人口变化对官方统计的影响
患者面临严重创伤,传染病或肿瘤引起的显着骨缺损时,通常需要手术骨移植才能完全愈合,这使得骨组织成为当今第二常见的移植组织(Migliorini等人,2021年)。传统的自体或同种异体骨移植经常遇到供体短缺,免疫排斥和对次级手术的需求(Dalipi等,2022)。骨组织工程(BTE)有可能通过促进快速骨再生来减轻这些问题。这是通过将官能细胞播种到生物相容性支架上的,在植入以促进骨骼再生之前,在体外培养到成熟。植入的支架为细胞提供了一个栖息地,可帮助营养供应,气体交换和废物清除。随着材料的降解,植入的骨细胞增殖,最终导致骨缺陷的修复(Ellermann等,2023; Jia等,2021)。BTE的关键在于鉴定高度生物相容性,迅速降解,无毒的脚手架材料,并且具有出色的孔隙率和表面生物活性。传统的支架材料,例如生物陶瓷,玻璃,金属和聚合物通常缺乏生物活性,导致诸如不良整合,磨损和腐蚀等问题,从而阻碍了功能性骨再生(Deng等,2023; Abbas et al。,2021;Pazarçeviren等,20221,20221)。虽然复合材料已经解决了单一材料的某些局限性,例如制造复杂性,脆性和对衰老的易感性,继续阻碍BTE的发展(Cannillo等,2021)。3D打印技术通过基于数字模型文件(Yang,2022)将粘合剂(例如金属或塑料)分层(例如粉末状金属或塑料)来构建对象。这项技术简化并加速了骨组织工程脚手架的制造,显着减少了生产时间,同时可以使用复杂的结构来创建个性化的脚手架,这极大地有益于患者损伤的修复(Anandhapadman等人,2022222222年)。尤其是3D生物打印的快速发展将其定位为生产组织工程脚手架材料的最有前途的技术之一,具有应对材料制备和推动材料科学和医学快速发展的主要挑战(Liu等人,2022年)。近年来,低温打印技术的应用进一步提高了脚手架的性能。Gao等。 (2022)证明,通过低温打印产生的层次多孔支架在生物矿化和骨再生方面具有显着优势。 尽管现有的评论文章广泛讨论了3D生物打印在骨组织工程中的应用,但大多数主要关注材料选择和过程优化,对挑战和潜在临床应用的潜在障碍有限分析。 这些评论通常会忽略3D生物打印与创新的生物材料和个性化结构设计相结合时如何应对骨组织工程中当前的挑战。 此外,本文探讨了如何创新Gao等。(2022)证明,通过低温打印产生的层次多孔支架在生物矿化和骨再生方面具有显着优势。尽管现有的评论文章广泛讨论了3D生物打印在骨组织工程中的应用,但大多数主要关注材料选择和过程优化,对挑战和潜在临床应用的潜在障碍有限分析。这些评论通常会忽略3D生物打印与创新的生物材料和个性化结构设计相结合时如何应对骨组织工程中当前的挑战。此外,本文探讨了如何创新回应,本文提供了3D生物打印的临床应用的全面摘要,分析了诸如印刷材料的可控降解性,与骨组织的机械兼容性以及植入后生物相容性的问题。