乌克兰战争是太空领域新商业范式(新太空)的壮观展示,似乎证实了美国 — — 特别是五角大楼 — — 自 2010 年代中期以来的适应努力因此,它强调了正在发生的变革,并宣布了轨道开发的潜在中断,特别是在卫星连接和地球观测领域。它还概述了未来的紧张局势,而围绕美国和中国构成的两个极点的国际关系结构加剧了有关太空活动的安全性、可行性、安全性和稳定性的问题。这些发展对欧洲保持在该领域的影响力提出了挑战。
背景:神经科学和神经技术的进步为人类带来了巨大的好处,尽管可能会出现未知的挑战。我们应该使用新标准以及现有标准来应对这些挑战。新颖的标准应包括适合推进神经科学和技术的道德,法律和社会方面。因此,韩国神经伦理学指南是由与神经科学和神经技术有关的利益相关者制定的,包括专家,政策制定者和大韩民国的公众。方法:该准则是由神经伦理学专家起草的,在公开听证会上被披露,随后通过各种利益相关者的意见进行了修订。结果:指南由十二个问题组成;人类或人类的尊严,个人个性和身份,社会正义,安全,社会文化偏见和公众交流,技术的滥用,对神经科学和技术使用的责任,根据使用神经技术,自治,隐私和个人信息,研究和增强的特殊性。结论:尽管指南可能需要在神经科学和技术的未来进步或社会文化环境变化之后进行更详细的讨论,但韩国神经伦理学指南的发展是神经科学和神经科学持续发展的科学界和社会的里程碑。
败血症是一种威胁生命的器官功能障碍,该功能障碍是由失调的宿主免疫反应触发的,以消除感染。激活宿主免疫反应后,触发了复杂,动态和时间依赖的过程。此过程促进了炎症介质的产生,包括急性期蛋白,补体系统蛋白,细胞因子,趋化因子和抗菌肽,这些肽是启动炎症环境所必需的,以消除入侵的病原体。该败血症引起的全身性炎症的生理反应会影响血脑屏障(BBB)功能;随后,内皮细胞产生炎症介质,包括细胞因子,趋化因子和基质金属蛋白酶(MMP),从而降解紧密连接(TJ)蛋白并降低BBB功能。所得的BBB渗透率允许血液中的外周免疫细胞进入大脑,然后释放一系列炎症介质并激活神经胶质细胞。活化的小胶质细胞和星形胶质细胞释放活性氧(ROS),细胞因子,趋化因子和神经化学物质,启动线粒体功能障碍和神经元损伤,并加剧大脑中的炎性环境。这些变化引发了败血症相关的脑病(SAE),这有可能增加认知能力恶化和后来生活中认知能力下降的易感性。
摘要:随着人们对用于增强建筑业的自动化和智能系统的兴趣日益浓厚,数字孪生 (DT) 作为满足利益相关者要求的经济高效的解决方案越来越受欢迎。数字孪生包括实时多资产连接、模拟和决策支持功能,许多近期研究已将工业 4.0 技术与 DT 系统结合,以实现特定于建筑的应用。然而,据我们所知,还没有全面的综述从工业 4.0 技术、项目管理和建筑生命周期的角度全面审视使用 DT 作为平台的好处。为了弥补这一空白,我们对过去 6 年内 182 篇关于建筑工程中数字孪生的论文进行了系统的文献综述,以解决这三个问题。在这篇综述中,首先建模了一个统一的框架,将工业 4.0 技术纳入数字孪生结构。接下来,基于石川图并考虑到建筑生命周期,提出了一种六 M 方法(包括机器、人力、材料、测量、环境和方法),以突出 DT 在确保建筑项目成功方面的优势。最后,通过确定 11 个未来方向,这项工作旨在为行业和学术界提供参考,以使用 DT 系统作为实现建筑 4.0 范式的基本推动力。
炎症反应与几乎所有疾病的发生和发展有关,包括慢性肝病。虽然炎症是肝损伤所有阶段的特征,但慢性肝损伤的具体病因,即酒精或代谢相关、病毒或自身免疫,可以调节肝脏内炎症环境的特征 (1)。炎症环境由细胞和可溶性因子的复杂混合物控制,这些因子在有害刺激下相互作用,以解决损伤或感染因子 (1-3)。从机制上讲,适当和有效的免疫细胞运输对于宿主防御病原体和应对损伤至关重要。细胞因子、白细胞介素和补体在有害刺激下直接作用于组织,而趋化因子则协调细胞浸润到组织内损伤部位的动态 (4,5)。过去二十年来对趋化因子系统的研究已经确定了这些炎症介质在肝病中发挥的多种作用。本综述的重点是整合与慢性肝病和肝纤维化有关的趋化因子生物学的当前知识,并期待趋化因子系统为患者带来有意义的改善。我们根据叙述性综述报告清单(可在 https://dmr.amegroups 上找到)撰写了以下文章。
摘要:学生是生活的一个阶段,在这里,人们会在生活中培养自己的生活,阅读和经历。他们的理解和知识反映了社会当前情况的真实情况。因此,探索学生对社会问题的观点和知识对于了解特定社会的现有状况非常重要。本研究试图在当代社会冲突环境中强调学生的知识及其对社会和学生学术生活的相关后果。本文中提供的信息是通过民族志研究收集的数据提供的,该数据是使用来自第11级至主级之间学习的645名学生的访谈时间表。线人是通过便利抽样选择的。该研究表明,曼尼普尔正在经历各种类型的社会冲突和动荡。这些社会冲突对国家的教育,社会经济,政治和健康地位产生了严重影响。公共交通不再发现,这些公共宵禁期间也关闭了机构。这种情况使学生在学校和大学缺席。此外,在这种情况下,受访者正在因其暴露而遭受精神障碍,而更多地关注社会问题,而对学习的兴趣较少可能会影响他们的学术职业。
迄今为止,已探索了各种结肠靶向口服给药系统来治疗结直肠疾病,包括定时释放系统、前药、基于 pH 的聚合物涂层和微生物群触发系统。其中,微生物触发系统引起了人们的关注。在讨论的各种口服结肠靶向给药系统中,基于多糖的结肠靶向给药系统被发现非常有前景,因为多糖不受胃和上肠环境的影响,并且仅在到达结肠时被结肠细菌消化。与这种给药相关的主要瓶颈是该系统在患病状态下不适用,因为当时细菌数量减少。这导致给药系统即使在结肠部位也无法释放药物,因为由于缺乏细菌,多糖基质/涂层无法被正确消化。据报道,益生菌的共同给药除了促进位点特异性释放外,还可以弥补细菌损失。然而,这项研究也仅限于临床前水平。因此,需要努力使该技术具有可扩展性和临床应用性。本文详细介绍了迄今为止制备的各种口服结肠靶向给药系统,以及基于多糖的口服结肠靶向给药系统的局限性和优点。
欧盟生物技术立法(转基因立法)的现代化 欧盟委员会目前正在制定一项政策倡议,以使有关新型遗传育种技术(NGT)的立法现代化。这特别涉及针对同源基因(将基因从一个物种的一个植物转移到另一个植物)和定向诱变(在不添加新基因的情况下修改基因组上选定的位置,例如“打开或关闭”基因)可能制定的新立法。目前,此类技术仍属于现有转基因法规的管辖范围。 IUCN-NL、自然与环境(N&M)和北荷兰自然与环境联合会(MNH)赞同欧盟委员会的目标,认为调查立法是否可以现代化是一个好主意。在此过程中,N&M 和 MNH 向欧盟委员会提供了他们认为至关重要的以下原则。 IUCN-NL作为IUCN国际的一部分,对生物技术主题没有官方立场。
摘要背景:受自然界的启发,仿生方法已被用于癌症靶向化疗的药物纳米载体。纳米载体被细胞膜包裹,这使它们能够结合天然细胞的功能。综述的关键科学概念:表面用细胞膜改造的纳米载体已成为癌症靶向化疗的迷人材料来源。细胞膜包覆纳米载体 (CMCN) 的一个显着特征是它们除了具有生物相容性外,还包含碳水化合物、蛋白质和脂质。CMCN 能够与肿瘤复杂的生物环境相互作用,因为它们包含其母细胞的信号网络和内在功能。已经研究了许多细胞膜,目的是用膜掩盖纳米载体,并且已经设计出各种肿瘤靶向方法来改善癌症靶向化疗。此外,来自不同细胞来源的膜的多样化结构拓宽了 CMCN 的范围,并提供了一类全新的药物输送系统。综述目的:本综述将描述 CMCN 的制造工艺和不同类型的细胞膜包覆纳米载体药物输送系统的治疗用途,以及解决障碍和未来前景。关键词:纳米载体、细胞膜、癌症、化疗、靶向药物输送
