自主城市客运渡轮有可能增强城市流动性。然而,尽管近年来进步,但在城市水道上运行自动型地面车辆(ASV)仍然具有挑战性,这不仅是因为运输乘客将安全标准提升到了最佳状态。本文介绍了由挪威挪威科学技术大学(NTNU)在挪威特朗德海姆(NTNU)开发的自主城市乘客渡轮“ Milliampere2”。设计功能和测试结果,涵盖了与以人为本的设计,电池和推进,自动导航和控制,远程监控和控制以及风险评估有关的第五个研究问题的研究。在2022年举行的为期三周的“ Milliampere2”公共试验,在其运营环境的背景下,在一条确定且经过良好的城市水道上综合了研究结果。“ milliampere2”项目增加了越来越多的用例,证明了ASV用于客运运输的可行性。可以识别出未来研究的杰出挑战,包括人类自治团队,偏远的台阶操作以及与乘客,交通工具和远程操作员的互动。[doi:10.1115/1.4067370]
摘要。随着高度自动化的船舶无人驾驶,其操作员将进入岸基控制中心。近年来,挪威科技大学建立了先进而灵活的研究基础设施,用于对自主船舶进行研究以及对这些船舶的监控和控制。基础设施包括 (1) milliAmpere1 和 milliAmpere2,这是两艘全电动自主城市客运渡轮,配备了先进的传感器和自主导航设备;(2) 岸上控制实验室,一个灵活的岸上控制中心,操作员可以在这里监视和控制一支自主船队;(3) 一个实验室部分,研究人员可以在这个实验室向控制中心的操作员发出指令,并记录、观察和分析他们的行为;(4) 一个毗邻控制室的观察室,利益相关者可以观察控制室正在进行的实验;(5) 渡轮模拟器 Autoferry Gemini,允许研究人员创建具有挑战性或高风险的场景,在这些场景中,操作员可以接受压力测试,而不会对船舶、船员和乘客造成危险;(6) 混合现实实验室 MRLAB,我们可以在虚拟环境中测试城市自主客运渡轮的物理设计;(7) 一个用于处理乘客并具有感应充电功能的码头。在本文中,我们首先描述了研究基础设施的目的和运行范围,以及技术设计、物理设置和设备。其次,我们提出了研究基础设施发展的路线图,以应对未来自主船舶及其监督和控制方面的研究挑战。第三,我们提出了未来几年将在实验室中探索的一系列研究问题。
摘要。随着高度自动化的船舶无人驾驶,其操作员将进入岸基控制中心。近年来,挪威科技大学建立了先进而灵活的研究基础设施,用于对自主船舶进行研究以及对这些船舶的监控和控制。基础设施包括 (1) milliAmpere1 和 milliAmpere2,这是两艘全电动自主城市客运渡轮,配备了先进的传感器和自主导航设备;(2) 岸上控制实验室,一个灵活的岸上控制中心,操作员可以在这里监控和控制一支自主船队;(3) 一个实验室部分,研究人员可以在这个实验室部分向控制中心的操作员发出指令,并记录、观察和分析他们的行为;(4) 一个毗邻控制室的观察室,利益相关者可以观察控制室正在进行的实验;(5) 渡轮模拟器 Autoferry Gemini,允许研究人员创建具有挑战性或高风险的场景,在这些场景中,操作员可以接受压力测试,而不会对船舶、船员和乘客造成危险;(6) 混合现实实验室 MRLAB,我们可以在虚拟环境中测试城市自主客运渡轮的物理设计;(7) 一个用于处理乘客并具有感应充电功能的码头。在本文中,我们首先描述了研究基础设施的目的和运行范围,以及技术设计、物理设置和设备。其次,我们提出了研究基础设施发展的路线图,以应对未来自主船舶及其监督和控制的研究挑战。第三,我们提出了未来几年将在实验室中探索的一些研究问题。
摘要。随着高度自动化的船舶无人驾驶,其操作员将进入岸基控制中心。近年来,挪威科技大学建立了先进而灵活的研究基础设施,用于对自主船舶进行研究以及对这些船舶的监控和控制。基础设施包括 (1) milliAmpere1 和 milliAmpere2,这是两艘全电动自主城市客运渡轮,配备了先进的传感器和自主导航设备;(2) 岸上控制实验室,一个灵活的岸上控制中心,操作员可以在这里监视和控制一支自主船队;(3) 一个实验室部分,研究人员可以在这个实验室向控制中心的操作员发出指令,并记录、观察和分析他们的行为;(4) 一个毗邻控制室的观察室,利益相关者可以观察控制室正在进行的实验;(5) 渡轮模拟器 Autoferry Gemini,允许研究人员创建具有挑战性或高风险的场景,在这些场景中,操作员可以接受压力测试,而不会对船舶、船员和乘客造成危险;(6) 混合现实实验室 MRLAB,我们可以在虚拟环境中测试城市自主客运渡轮的物理设计;(7) 一个用于处理乘客并具有感应充电功能的码头。在本文中,我们首先描述了研究基础设施的目的和运行范围,以及技术设计、物理设置和设备。其次,我们提出了研究基础设施发展的路线图,以应对未来自主船舶及其监督和控制方面的研究挑战。第三,我们提出了未来几年将在实验室中探索的一系列研究问题。
摘要。随着高度自动化的船舶无人驾驶,其操作员将进入岸基控制中心。近年来,挪威科技大学建立了先进而灵活的研究基础设施,用于对自主船舶进行研究以及对这些船舶的监控和控制。基础设施包括 (1) milliAmpere1 和 milliAmpere2,这是两艘全电动自主城市客运渡轮,配备了先进的传感器和自主导航设备;(2) 岸上控制实验室,一个灵活的岸上控制中心,操作员可以在这里监视和控制一支自主船队;(3) 一个实验室部分,研究人员可以在这个实验室向控制中心的操作员发出指令,并记录、观察和分析他们的行为;(4) 一个毗邻控制室的观察室,利益相关者可以观察控制室正在进行的实验;(5) 渡轮模拟器 Autoferry Gemini,允许研究人员创建具有挑战性或高风险的场景,在这些场景中,操作员可以接受压力测试,而不会对船舶、船员和乘客造成危险;(6) 混合现实实验室 MRLAB,我们可以在虚拟环境中测试城市自主客运渡轮的物理设计;(7) 一个用于处理乘客并具有感应充电功能的码头。在本文中,我们首先描述了研究基础设施的目的和运行范围,以及技术设计、物理设置和设备。其次,我们提出了研究基础设施发展的路线图,以应对未来自主船舶及其监督和控制方面的研究挑战。第三,我们提出了未来几年将在实验室中探索的一系列研究问题。
摘要。随着高度自动化的船舶无人驾驶,其操作员将进入岸基控制中心。近年来,挪威科技大学建立了先进而灵活的研究基础设施,用于对自主船舶进行研究以及对这些船舶的监控和控制。基础设施包括 (1) milliAmpere1 和 milliAmpere2,这是两艘全电动自主城市客运渡轮,配备了先进的传感器和自主导航设备;(2) 岸上控制实验室,一个灵活的岸上控制中心,操作员可以在这里监视和控制一支自主船队;(3) 一个实验室部分,研究人员可以在这个实验室向控制中心的操作员发出指令,并记录、观察和分析他们的行为;(4) 一个毗邻控制室的观察室,利益相关者可以观察控制室正在进行的实验;(5) 渡轮模拟器 Autoferry Gemini,允许研究人员创建具有挑战性或高风险的场景,在这些场景中,操作员可以接受压力测试,而不会对船舶、船员和乘客造成危险;(6) 混合现实实验室 MRLAB,我们可以在虚拟环境中测试城市自主客运渡轮的物理设计;(7) 一个用于处理乘客并具有感应充电功能的码头。在本文中,我们首先描述了研究基础设施的目的和运行范围,以及技术设计、物理设置和设备。其次,我们提出了研究基础设施发展的路线图,以应对未来自主船舶及其监督和控制方面的研究挑战。第三,我们提出了未来几年将在实验室中探索的一系列研究问题。
