应用微波电子工程与研究协会 (SAMEER) 是印度政府电子和信息技术部 (MeitY) 下属的顶级射频和微波研发实验室。其主要目标是促进射频/微波电子、医疗电子、电磁学、光子学和量子技术、毫米波技术及其相关领域的科学技术发展。SAMEER 为崭露头角的工程和科学毕业生提供合适的环境,让他们获得最新技术、仪器和软件的实践经验。它提供了与杰出科学家和学术界会面和互动的机会,这是进一步实现专业和学术目标的良好起点。SAMEER 建议根据 1961 年《学徒法》与研究生和文凭学徒学员签订为期一年的合同,在 Powai 和 Kharghar 校区接受 SAMEER 培训,以期为他们提供这些知识,使他们成为一名熟练的工程师。职位描述和职位的基本资格如下 -
根据用途,电池有不同的类型和尺寸,如硬币型、袋式、棱柱型或圆柱型电池。然而,制造方面的主要区别在于电极(阳极和阴极)的组装过程。组装过程基本上有两种方式:卷绕或堆叠。在卷绕过程中,电极被卷成圆柱形,有时被压平以适合棱柱形外壳,但主要用于圆柱形电池和硬币型电池。在堆叠过程中,电极片交替堆叠在一起。这种电极组件也经常被称为果冻卷或堆叠。无论哪种方式,阳极片都比阴极电极大。较大阳极与较小阴极之间的距离也称为阳极悬垂或阳极 - 阴极悬垂 (ACO)。阳极悬垂可以从几十分之一毫米到几毫米不等,具体取决于电池尺寸。理想的电池单元具有完美对齐的阴极和阳极水平,从而产生均匀的交流悬垂。
16. 摘要 提高低能见度操作期间的安全性是航空业面临的最关键挑战之一。为此,航空界一直致力于开发驾驶舱显示技术,以提高飞行员在自然视力受损的情况下获取视觉信息的能力。组合视觉系统 (CVS) 就是这样一种技术。CVS 利用机载成像传感器(例如毫米波雷达、前视红外)以及地形和障碍物数据库获取的数据,将它们组合起来,并以叠加的方式显示在驾驶舱显示器上。CVS 的一些操作优势包括改进的跟踪性能、减少飞行路径误差和减少工作量。未来的研究应解决飞行员在特定操作结构(例如,低头显示器与抬头显示器)中使用 CVS 的表现、CVS 显示器缩小对飞行员表现的影响以及使用 CVS 时低头到抬头的转换。
5G 第五代移动网络 / 移动服务 5GC 5G 核心 AAU 有源天线单元 ASTRI 应用科技研究院 BBU 基带单元 CPE 客户端设备 EMBB 增强型移动宽带 EIRP 有效全向辐射功率 FDD 频分双工 HKSTP 香港科技园 ISAC 集成传感及通信 LOS 视距 MIMO 多输入多输出天线 mmWave 毫米波 NLOS 非视距 NSA 非独立 OFCA 通讯事务管理局 PDCP 分组数据汇聚协议 PHY 物理层 RBS 无线基站 RSRP 参考信号接收功率 RTT 往返时间 QAM 正交幅度调制 SA 独立 SINR 信号与干扰与噪声比 TDD 时分双工 UE 用户设备 URLLC 超可靠低延迟通信
与共面波导 (CPW) 谐振器相比,紧凑型电感电容 (LC) 谐振器具有简单的集总元件电路表示,但通常需要复杂的有限元法 (FEM) 模拟才能进行精确建模。这里,我们为一系列共面 LC 谐振器提供了一种简单的分析模型,其中的电气特性可以直接从电路几何形状中获得,并且具有令人满意的精度。我们对 10 个高内部品质因数谐振器(Q i ≳ 2 × 10 5)进行的实验结果,频率范围大约从 300 MHz 到 1 GHz,与推导的分析模型和详细的 FEM 模拟都显示出良好的一致性。这些结果展示了设计谐振频率偏差小于 2% 的亚千兆赫谐振器的能力,这具有直接的应用,例如,在超灵敏低温探测器的实现中。所实现的平方毫米量级的紧凑谐振器尺寸表明在单个芯片上集成数百个微波谐振器以实现光子晶格的可行方法。
多通道电生理传感器和刺激器,尤其是用于研究神经系统的刺激器,最常见的是基于单片微电极阵列。这种体系结构限制了单个电极放置的空间灵活性,从而构成了缩放到大量节点的约束,尤其是在非连续位置的范围内。我们描述了亚毫米尺寸电子微芯片的设计和制造,这些电子微芯片(“神经元”)自主执行神经感测或微刺激,重点是它们的无线网络和动力。一个〜1 GHz电磁的经皮连接到外部电信枢纽可以在单个神经趋势上进行双向通信和控制。该链接在定制的时分部多访问(TDMA)协议上运行,旨在扩展多达1000个神经元。该系统在小动物(大鼠)模型中被证明为具有解剖学限制的小动物(大鼠)模型的皮质植入物,将植入物限制为48个神经元。我们建议可以将神经重的方法推广,以克服无线传感器和执行器作为可植入的微型系统的许多可伸缩性问题。
这种新型 ICL 激光器能够高效工作,覆盖从 2 μm 以下到 11 μm 以上的大范围中红外波长 [2-8] 。此外,近年来,这种激光器已经在商业上可用 [7],用于化学传感、成像和工业过程控制等实际应用。尽管如此,它们仍然价格昂贵,供应商很少,交货时间相对较长。部分原因是 ICL 的 Sb 基 III-V 材料和相关器件制造技术不太成熟,而且与更成熟的 InP 和 GaAs 基材料体系相比,Sb 基材料的生长资源有限。因此,与其他半导体激光器(如带内量子级联激光器(QCL)[9] )相比,在 ICL 开发上投入的努力非常有限。ICL 的许多方面尚未探索或仍处于早期阶段。
易于组装和拆卸,使螺纹紧固件成为连接部件的无可比拟的方法。螺钉连接是组装各种机械装置的最常用方法。机动车、飞机、火车车厢、洗衣机、电视机、宜家家具和手机都依赖于尺寸合适、拧紧良好的螺钉连接,以使组装、搬运、维护和维修对生产商有利可图,而用户负担得起。用于此目的的螺钉有各种类型和尺寸,从小于 1 毫米到几百毫米不等。一辆普通汽车大约需要 3,000 个螺钉。如果所有这些螺钉都必须用手拧紧,汽车就会非常昂贵,很少有人买得起。为了使生产合理、经济并保持一致的质量,电动工具被广泛用于工业生产和商业运营的服务和维护操作中拧紧螺丝。
(2)先进材料是指通过专门的加工合成技术开发而产生的具有工程特性的材料,包括陶瓷、高附加值金属、电子材料、复合材料、聚合物和生物材料。(3)生物技术是指应用重组DNA技术、生物化学、分子和细胞生物学、遗传学和基因工程、细胞融合技术和新的生物工艺等技术,利用生物体或生物体的部分来生产或改造产品,改良植物或动物,开发用于特定用途的微生物,确定小分子药物开发的目标,或将生物系统转化为有用的过程和产品或开发用于特定用途的微生物。(4)电子器件技术是指涉及微电子、半导体、电子设备和仪器、射频、微波和毫米波电子、光学和光电器件以及数据和数字通信和成像设备的技术。 (5)环境技术,是指对人类健康或环境的威胁或损害的评估和预防、环境清理、以及替代能源的开发。
可拉伸电子产品在医学、传感和机器人领域的应用越来越受到关注。当前的可拉伸材料要么是本质上可拉伸的,要么是图案化为可拉伸结构,要么是通过形成某种可拉伸材料和具有某些所需特性(例如高导电性)的刚性材料的复合材料而制成的。然而,文献中缺乏可拉伸磁性材料,而将可拉伸性和磁性相结合的设备仅限于使用串行制造工艺,例如将毫米级磁体嵌入聚合物基质中。在这项研究中,我们介绍了一种可拉伸复合硬磁墨水,该墨水由钡六铁氧体纳米颗粒与 9510 单组分环氧灌封化合物和二(丙二醇)甲醚混合而成。然后使用丝网印刷方法,将该墨水用于制造磁应变传感器,作为材料和工艺的概念验证。结果表明,可以制成一种可拉伸的硬磁墨水,其由钡六铁氧体颗粒夹杂物提供 20 kA/m 的剩磁,并由环氧树脂提供至少 100% 应变的拉伸性。
