眼睛看不到的东西 就像我们的眼睛一样,光学望远镜可以探测到可见光,但可见光只是电磁波谱的一部分。不同波长或频率的可见光在我们看来会呈现不同的颜色。当频率太高时,辐射就不再可见:我们看不到紫外线、X 射线或伽马射线。同样,当频率太低时,我们看不到红外线、毫米波或无线电波。正如某些物体在某种颜色下比在另一种颜色下更容易看到一样,在肉眼看不见的频率下观察天文物体(包括无线电观测)可能会发现新的和不同的信息。
“由于研究的多样性,挑战的一部分也与可用的非致命技术范围有关。有声学技术,如远程声学呼叫装置或警告弹药,可以投射到数百米外,以提供增强的警告。其他技术包括眩目激光。毫米波技术可以产生强烈的热感,让人无法忍受呆在原地,如果你需要将他们移开,或者如果你需要将人质劫持者与人质隔离开来,以便获得清晰的射击。还有其他定向能系统可用于阻止车辆或船只。如果小型船只或汽车接近检查站(入口控制点)时存在电子敏感度。”
摘要。目的:扩散加权磁共振成像(DW-MRI)是一种关键成像方法,用于以毫米尺度捕获和建模组织微体系结构。对测量的DW-MRI信号进行建模的常见做法是通过光纤分布函数(FODF)。此功能是下游拖拉学和连通性分析的重要第一步。具有数据共享的最新优势,大规模多站点DW-MRI数据集可用于多站点研究。但是,在获得DW-MRI期间,测量变化(例如,间和内部变异性,硬件性能和序列设计)是不可避免的。大多数基于模型的方法[例如,受约束的球形反卷积(CSD)]和基于学习的方法(例如,深度学习)并未明确考虑FODF建模中的这种变异性,从而导致在多现场和/或纵向扩散研究上的性能下降。
1 天津市成像与传感微电子技术重点实验室,天津大学微电子学院,天津 300072 2 天津大学电气与信息工程学院,天津 300072 3 东南大学信息科学与工程学院,毫米波国家重点实验室,南京 210096 4 西安电子科技大学电子工程学院,高速电路设计与电磁兼容教育部重点实验室,西安 710071 5 华为技术有限公司,上海 518129 6 伦敦大学学院电子与电气工程系,伦敦 WC1E7JE,英国 7 浙江大学信息与电子工程学院,浙江省微纳电子器件与智能系统重点实验室,杭州 310027
如今,基于石英谐振器的参考振荡器的工作频率被限制在几百兆赫。从这样的参考振荡器中获取千兆赫范围的信号需要倍频或频率合成。然而,倍频过程会根据倍频系数的 20log 10 增加输出信号的相位噪声,同时也会增加电路的复杂性。从这个意义上讲,直接在毫米 (mm-) 波段的基频上产生 LO 信号是有利的。然而,这需要一个高质量 (Q-) 因子谐振器,最好在几千兆赫下工作。采用金属腔的传统无源谐振器的 Q 因子受到金属中的电阻损耗的限制。或者,基于陶瓷谐振器的直接在基频下工作的振荡器提供平均相位噪声,并且通常在 25 GHz 以上不可用。
微波球光子学本期《 JLT特刊》将在“ 2024 IEEE Microwave Photonics International International主题会议”(MWP'2024,http://www.mwp20244.org/)中举行,该领域于9月17日至20日在意大利的皮萨举行。它向MWP'2024中的各种演示文稿(全体会议,被邀请,口头谈话和海报)以及微波光子学领域的其他提交(未在MWP'2024中提出)开放。微波光子学与用于微波,毫米和THZ波工程应用的光子设备,系统和技术有关,并涵盖用于微波系统应用的高速光子组件的开发。该领域正在继续经历显着的增长,这是由于用于5G/6G应用的综合微波光子学和微波/毫米波光子学的最新兴趣和发展所推动。主题包括(但不限于):
1 1光电信息技术(天津大学),教育部,精密仪器和光电学院,蒂安金大学,天津300072,中国2,伦敦大学伦敦大学电子学院,伦敦伦敦伦敦伦敦大学WC1E材料,伦敦大学伦敦大学伦敦大学伦敦大学伦敦大学,伦敦大学伦敦大学,纽约市,纽约大学,纽约大学,纽约大学,纽约大学,纽约大学,泰安金300072 300072 300072 22116,中国4号电气与信息工程学院,天津大学,天津300072,中国5毫米浪潮的国家主要实验室,信息科学与工程学院,东南大学,南京210096,210096,中国6,Micro-Nano电子设备和智能系统的Micro-Nano电子设备和智能系统,ZHEJIANG Science and Electricing of Science Hangian Zhejiang Science和Electronic Zhejiang 310027,中国7 lanzhihao7@gmail.com * wuliang@tju.edu.cn1光电信息技术(天津大学),教育部,精密仪器和光电学院,蒂安金大学,天津300072,中国2,伦敦大学伦敦大学电子学院,伦敦伦敦伦敦伦敦大学WC1E材料,伦敦大学伦敦大学伦敦大学伦敦大学伦敦大学,伦敦大学伦敦大学,纽约市,纽约大学,纽约大学,纽约大学,纽约大学,纽约大学,泰安金300072 300072 300072 22116,中国4号电气与信息工程学院,天津大学,天津300072,中国5毫米浪潮的国家主要实验室,信息科学与工程学院,东南大学,南京210096,210096,中国6,Micro-Nano电子设备和智能系统的Micro-Nano电子设备和智能系统,ZHEJIANG Science and Electricing of Science Hangian Zhejiang Science和Electronic Zhejiang 310027,中国7 lanzhihao7@gmail.com * wuliang@tju.edu.cn
在我们重新开放活动期间参观 ARF 大院,重新与 ARF 团队建立联系,因为 ARF 运营从阿拉巴马大学亨茨维尔分校 (UAH) 过渡到美国陆军太空与导弹防御司令部技术中心 (SMDC Tech Center)。了解该团队在根据新的监管批准、流程和程序上线关键国家资产、大型 254 毫米 (mm) 两级轻气枪 (TSLGG)、世界第二大 TSLGG 和中型 133 毫米 TSLGG 方面取得的最新成就。更新包括改进的设施运营、改进的诊断系统、现代化的设备、最近的研究工作以及单级轻气枪 (LGG) 的新功能。
组件包括功率分配器、混合定向耦合器、多路复用器、循环器和隔离器。有源组件系列包括低噪声放大器、驱动放大器、限幅放大器和功率放大器,控制组件包括多端口开关、衰减器、混频器、锁相介质谐振器振荡器 (PLDRO)、合成器等。多端口多通开关最多 16 个端口,覆盖多个倍频程,速度快、功率大,端口之间隔离度更高,这些都是内部设计和开发的。微波和毫米波组件、子系统和系统的全部系列都是内部设计、实现、组装、调试和测试的,所需的技能和经验已经很成熟。其中所有或大部分都是通过生产合作伙伴作为组件、子系统和系统或集成模块生产的。