为解决复合相变储热材料在建筑节能中的应用问题,作者提出将纳米复合储能材料应用于绿色建筑设计。采用混酸氧化球磨法制备改性碳纳米管,并与硬脂酸复合制备相变储热材料。采用混酸氧化球磨法制备改性碳纳米管,并与硬脂酸复合制备相变储热材料。实验结果表明,酸化碳纳米管对硬脂酸分子段的热扩散产生阻碍作用,使得添加质量分数1%的碳纳米管的热导率仅为纯硬脂酸的1.3倍。结论纳米复合储能材料在绿色建筑设计中具有良好的应用前景。
摘要:纳米技术将在未来十年的截然不同的领域(包括医学和药房)极大地影响我们的生活。将材料转移到纳米构象中会改变其物理特性,这些特性在药物中用于开发新的创新配方原理,用于可溶性差的药物:药物纳米晶体。药物纳米晶体不属于未来;第一个产品已经在市场上。审查了与工业相关的生产技术,珍珠铣削和高压均质化。讨论了药物纳米晶体背后的物理学及其物理特性的变化。出现了市场产品,并解释了在每种市场产品中使用的纳米晶体的特殊物理作用。提出了开发管道中产品(临床阶段)中产品的示例,并在概述中总结了药物纳米晶体体内给药的好处。关键字:药物纳米晶体,珍珠铣削,高压均质化,纳米晶体,解离,纳米底,纳米,生物利用度增强,饱和溶解度,溶解速度
• 金属加工:现代精密车床、数控机床和手动铣床。 • 焊接:自动 TIG 焊接车床、轨道焊接、手动焊接机。 • 真空:高真空泵、站和室、氦气泄漏检测器。 • 钎焊、热处理和金属多孔材料生产:高温真空炉、
含有带负电的氮空位中心 (NV − ) 的纳米金刚石可用作生物材料中的局部传感器,并已被提议作为探测空间叠加的宏观极限和引力的量子性质的平台。这些应用的一个关键要求是获得含有 NV − 并具有长自旋相干时间的纳米金刚石。与蚀刻柱不同,使用研磨来制造纳米金刚石可以一次处理块状材料的整个 3D 体积,但到目前为止,NV − 自旋相干时间有限。在这里,我们使用通过 Si 3 N 4 球磨化学气相沉积生长的块状金刚石生产的天然同位素丰度纳米金刚石,平均单一替代氮浓度为 121 ppb。我们表明,这些纳米金刚石中 NV − 中心的电子自旋相干时间在室温下在动态解耦的情况下可以超过 400 µ s。扫描电子显微镜提供了含有 NV − 的特定纳米金刚石的图像,并测量了其自旋相干时间。
它与减材制造相反,减材制造使用铣床等设备切割/挖空一块金属或塑料。3D 打印传统上用于原型设计,在制造假肢、支架、牙冠、汽车零件和消费品等方面具有广泛的应用。
通过铣削,打磨,运输(Sobueclay)通过散射地面岩石(与发电的相关背景数据,设备生产等的相关背景数据)在ERW Energy使用eRW Energa的操作数据中,通过GAS-SOLID COSILID与House House Operation,Pasterpessing等通过ERW Energy使用下的操作数据(MHI,MHI,JCE,JCE)通过铣削,打磨,运输(Sobueclay)通过散射地面岩石(与发电的相关背景数据,设备生产等的相关背景数据)在ERW Energy使用eRW Energa的操作数据中,通过GAS-SOLID COSILID与House House Operation,Pasterpessing等通过ERW Energy使用下的操作数据(MHI,MHI,JCE,JCE)
A.谷物:谷物组包括由小麦,大米,燕麦,玉米面,大麦和其他谷物谷物制成的食物。谷物提供纤维,碳水化合物,蛋白质,B-维生素和抗氧化剂。谷物的每日建议为6-8盎司。至少一半的摄入量应该是全谷物。1。全谷物:全谷物是全谷物或由它们制成的食物的描述性术语,其中包含100%原始谷物内核。谷物内核(或种子)由麸皮,胚芽和胚乳组成。全谷物包括玉米,大米,小麦,藜麦,黑麦和燕麦。全谷物产品的例子是全麦面粉,燕麦片和糙米。鼓励人们在饮食中添加全谷物。每日食物选择可以使一个人的健康有很大的不同。例如,在比较白米与一份糙米的食物时,白米饭的选择导致抗氧化剂,镁,B-维生胺和磷的损失约为75%。这些营养素是棕色涂层的一部分,通过铣削过程去除,以制造白米饭。2。精制谷物:精制谷物是用于并非整个谷物的术语,因为它们缺少一个或多个谷物的关键部分(麸皮,胚芽或胚乳)。铣削过程可去除谷物中约25%的蛋白质,以及50%或更多的其他营养素(纤维,铁,B族维生素)。铣削过程会产生更细的质地,并延长了加工食品的保质期。精制谷物的例子是白面粉和白米饭。B.蔬菜:蔬菜提供碳水化合物,维生素(尤其是维生素A和C),叶酸,包括钾和纤维在内的矿物质。
摘要。这些年来,工业进步带来了快速、高质量的生产。尽管取得了这些进步,但与此类生产相关的影响,无论是社会影响、经济影响还是环境影响,有时都没有得到广泛的研究。该行业意识到了更环保的方法的重要性,因此,出现了新的可持续技术,如增材制造 (AM)。为了概括 AM 相对于传统制造的环境效益,使用了生命周期评估 (LCA) 等方法。拟议的工作旨在了解和量化与用于制造金属零件的特定 AM 技术(电弧增材制造 (WAAM))相关的环境影响。进行了 LCA,并考虑了相同情况,分析了与生产 3 种不同金属零件相关的环境影响。为了了解获得的结果,同样考虑了也用于制造金属零件的计算机数控 (CNC) 铣削。在这个特定的应用中,与 CNC 铣削相比,WAAM 对环境的影响被证实为 12%-47%,具体取决于所考虑的几何形状。这两种工艺确定的环境热点都是原材料的生产。
矫形器制造已从传统铸造和模塑方法等传统方法发展到采用更多数字化工艺、数控铣削和 3D 扫描,每种工艺都有其独特的挑战。这些技术虽然是行业的基础,但也存在很大的局限性。• 传统铸造和模塑方法:矫形器制造传统上涉及使用泡沫箱制作脚的物理模型,以获得负模,从而指导制作正石膏模型。该模型用于真空成型,其中热塑性片材在模型上成型。尽管这是制造的核心部分,但该过程通常会导致矫形器的厚度和密度发生变化,从而影响舒适度和有效性。还需要手动调整缓冲和针对患者的矫正,这既费时又费力。这种传统方法面临着精度和效率方面的挑战,因此很难快速生产定制矫形器。• 数字创新:数控铣削和 3D 扫描:3D 扫描仪的集成正在通过将传统工作流程转变为数字领域来彻底改变传统工作流程。这种集成有助于实现精确定制,并展示了更高效和个性化的矫形器生产的潜力。
