摘要:我们提出的概念旨在寻找新的靶结构,以对抗尚未满足医疗需求的癌症。不幸的是,这仍然适用于大多数临床上最相关的肿瘤实体,例如肝癌、胰腺癌和许多其他肿瘤。当前的靶结构几乎都属于由肿瘤特异性基因改变引起的致癌蛋白类,例如激活突变、基因融合或基因扩增,通常被称为癌症“驱动改变”或简称为“驱动因素”。然而,恢复肿瘤抑制基因 (TSG) 失去的功能也可能是治疗癌症的有效方法。TSG 衍生的蛋白质通常被认为是细胞对抗致癌特性的控制系统;因此,它们代表了“生命之车”中的刹车。到目前为止,通过基因疗法恢复这些肿瘤缺陷刹车尚未成功,只有少数例外。可以假设大多数 TSG 不是通过基因改变(1 类 TSG)失活的,而是通过表观遗传沉默(2 类 TSG 或简称“C2TSG”)失活的。癌症治疗中 C2TSG 的重新激活正在通过使用 DNA 去甲基化剂和组蛋白去乙酰化酶抑制剂来解决,这些抑制剂作用于整个癌细胞基因组。这些表观遗传疗法都没有特别成功,可能是因为它们是“散弹枪”方法,虽然作用于 C2TSG,但也可能重新激活基因组中表观遗传沉默的致癌序列。因此,需要新的策略来利用 C2TSG 的治疗潜力,C2TSG 最近也被命名为 DNA 甲基化癌症驱动基因或“DNAme 驱动”。在这里,我们提出了一种新的转化和治疗方法的概念,该方法侧重于高度与疾病相关的 C2TSG/DNAme 驱动编码的蛋白质的表型模仿(“模仿”)。关于 C2TSG 的分子知识被用于两种互补的方法,它们具有共同的定义模拟药物的转化概念:首先,提出了一种概念,即如何开发截短和/或基因工程化的 C2TSG 蛋白(仅由具有明确肿瘤抑制功能的结构域组成)作为生物制剂。其次,描述了一种识别可以模拟癌细胞中丢失的 C2TSG 蛋白作用的小分子的方法。这两种方法都应该为抗癌药物开辟一个新的、以前未开发的发现空间。
MicroRNA(miRNA)是一小群内源性单链非编码RNA,长度为20-22个核苷酸,参与多种细胞过程,如细胞存活、细胞死亡、分化和增殖。它们通过直接结合特定靶mRNA起作用,从而抑制基因表达(15,16)。多项研究表明,miRNA被认为是多种癌症(如结肠癌和乳腺癌)的重要诊断和治疗生物标志物(17,18)。此外,miRNA参与几乎所有的血液学过程,表明miRNA在CLL中发挥着重要作用(19-21)。在大多数CLL病例中都观察到了遗传异常。这些畸变包括中等风险的11q缺失、低风险的13q缺失和高风险的17p缺失(22)。13q14缺失是最常见的遗传畸变,在超过
推荐引用 推荐引用 Li, Longji,“模拟碳酸酐酶的金属有机骨架的合成及催化性能”(2021 年)。Mahurin 荣誉学院顶点体验/论文项目。论文 924。https://digitalcommons.wku.edu/stu_hon_theses/924
摘要 当前的技术设计追求将类似人类的特征应用于人工智能技术。由于人类思维的本质复杂性,这些尝试面临许多挑战。认知模仿是一种在设计智能技术时模仿人类信息过程的设计方法。重点是模仿认知、人类知识结构和所代表的心理信息内容,这解决了技术设计中的一个基本问题。然而,认知是人类思维中信息处理的一个方面。情感信息处理在解决认知过程的意义方面也起着至关重要的作用。本文讨论了情感模仿(从概念工程的认知模仿扩展而来)作为一种设计人工智能技术智能和类人实体的设计方法。情感模仿的自然框架来源是情感信息空间,指的是人周围具有情感意义的物体。情感模仿和情感信息空间在指导元宇宙设计方面的潜力被用作一个说明性示例。
摘要。Mimivivus是一种巨型病毒,可感染变形虫,长期以来由于其大小而被认为是细菌。病毒颗粒由直径约500 nm的蛋白质衣帽组成,该蛋白质的直径封闭在多糖层中,其中约有120-140 nm长的纤维嵌入,总直径为700 nm。该病毒的基因组大小为1.2 Mb DNA,令人惊讶的是,仅在不进入细胞核的情况下在感染细胞的细胞质中复制,这在DNA病毒中是独特的特征。他们的存在是不可否认的;然而,与任何新发现一样,仍然存在有关其致病性机制的不确定性,以及Mimivulus Virophage耐药性元件系统(Mimivire)的性质,该术语描述了Mimivirus的免疫网络,这些术语与CRISPR -CAS系统非常相似。本综述的范围是讨论源自对麦米病毒的独特特征进行的结构和功能研究的最新发展,以及有关其针对人类推定的临床相关性的研究。
触摸神经元。CRISPR-CAS9基因编辑用于将磷酸化T231A,磷酸化模拟T231E和乙酰基模拟的K274/281Q突变引入Tain4 Orf。为简单起见,这些突变体将称为T231A,T231E和K274/281Q。(b,c)第3天的触摸神经元的荧光图像,表达dendra2 :: Taut4转化融合和T231E突变体的单拷贝转基因编码。虚拟的圆圈表示PLM细胞体的位置,显示在插图中。比例尺,0.5 µm。注意,斑点荧光来自后肠中标记为GFP的HSP-60表达式。(c,d)成年第3和第10天,对面板A中列出的菌株的PLM细胞体荧光定量。数据是来自两个独立技术重复的平均值±SD。各个数据点从单独动物的单个PLM细胞中划分值(n = 25±5)。统计分析是通过Tukey的事后测试进行的双向方差分析,在比较包围样品时,*** p <0.001。请注意,左侧条形柱是指单独携带Dendra2报告基因的转基因菌株的荧光定量,而右侧则是指携带Dendra2和HSP-60记者的菌株。(e)表达整合的UPR MT报告基因P HSP-60 :: GFP和单拷贝MOSSCI插入的转基因蠕虫的代表性荧光图像。比例尺,0.5毫米。数据是平均±SD(来自两个独立生物学重复的20只动物)。(f)从面板中列出的菌株的后肠道区域中荧光信号强度定量。ns表示不显着,如通过单向方差分析计算,然后进行Tukey的多重比较测试。
科学界。[1-7]无论如何,每次活着都会揭示出新颖的适应性和动态反应性的模仿行为,它都会激发并促进未来派和不受欢迎的技术成果。[8-12]在生物学水平上,视觉crypsis是物种通过与栖息地的颜色和几何图案相匹配而与周围环境相似的能力。从这个意义上讲,生物可以通过色素沉着或散发性元素在介观尺度上的布置和优化结构进行光学控制(这可以在体内表现出身体上的皱纹和质地以逃避检测或观察)。[13–18]这两种机制的特征在于时间响应,范围从毫秒到数百秒。在自然界中,几个物种都利用了隐性能力,例如,在头足类动物中,[7] crustaceans,[19]爬行动物,[1,20,21]昆虫,[22,23]鸟类,[24,25]贝壳,[26,27]植物,[26,27]植物,[28,29]。生物色彩变化和身体模式与生殖,交流,防御和/或掠夺性策略有关。不幸的是,在动物和植物中引导这些行为的神经或中央控制链系统仍然以某种方式引起了科学家的雾。[7,30–32]关于其中央信息过程系统的完整知识,可以对许多科学分支的惊人开发,从神经生物学[33,34]到量子生物学。更重要的是,章鱼是一种杰出的智能物种,例如,可以按照部分的顺序打开罐子或避免掠食者。[35]毫无疑问,自然世界中最讨论的研究案例是头足类动物,不仅可以高度进化和专门从事快速自适应色彩更改的显示器,而且还可以在暴露于特定的机械,热,光学,光学或化学刺激的情况下会使他们的皮肤生成3D模式。软肌肉排列,[36–38]空间分布和可扩展的吸收成分(即染色体),[39,40]虹彩元素(即虹膜phores)[41,42],[41,42]和亮白色散射剂(即亮白色散射器(即负责)[43] [43]是负责的。[44]因此,由于其身体的力学和形态之间的共生以及分离的感觉神经运动控制系统,头足类通常被视为体现智力的完美例子[45]。他们的“学习”,“机械”和“物质智力”将是我们的评论,从而使我们的lodestars成为
摘要 处理“大数据”(基于或由人工智能辅助)的需求日益增长,人们对更全面地了解大脑运作的兴趣也日益增加,这刺激了人们努力用廉价的传统组件构建仿生计算系统,并构建不同的(“神经形态”)计算系统。一方面,这些系统需要大量处理器,这会带来性能限制和非线性扩展。另一方面,神经元操作与传统工作负载截然不同。传导时间(传输时间)在传统计算和神经网络的“时空”计算模型中都被忽略了,尽管冯·诺依曼警告说:“在人类神经系统中,沿线(轴突)的传导时间可能比突触延迟更长,因此我们上述忽略它们(除了τ[处理时间])的程序是不合理的”[1],第 6.3 节。单是这种差异就使得在技术实现中模仿生物行为变得困难。此外,计算领域的最新问题引起了人们对时间行为也是计算系统的一个普遍特征的关注。它们在生物和技术系统中的一些影响已经引起了人们的注意。这里建议不要引入一些“看起来像”的模型,而是正确处理传输时间。引入基于明可夫斯基变换的时间逻辑可以定量地洞察
摘要:水凝胶是植入生物活性神经界面开发的理想材料,因为神经组织模仿了物理和生物学特性,可以增强神经接口的兼容性。然而,由于不可靠的界面键合,水凝胶和刚性/脱水的电子微结构的整合是具有挑战性的,而水凝胶与微机械制造过程所需的大多数条件不兼容。在此,我们提出了一种新的酶介导的转移打印过程来设计粘合剂生物水凝胶神经界面。通过含有各种导电纳米颗粒(NPS)的明胶甲基丙烯酰基(GELMA)的照片连接来制造供体底物,包括AG纳米线(NWS),PT NWS和PEDOT:PSS:形成可拉伸的导电性的BioelectRode,以形成一种称为np-np-doped geLma的可拉伸性bioelectRode。另一方面,由微生物转谷氨酰胺酶组成的接收器底物构成了与掺入的明胶(MTG-GLN)同时进行的时间控制的凝胶化和共价键增强的粘附,以实现预制的NP型NP型NP型Gelma特征的一步转移印刷。集成的水凝胶微电极阵列(MEA)具有粘合剂,并且在机械/结构上符合稳定的电导率。这些设备在水分上在结构上是稳定的,以支持神经元细胞的生长。尽管引入了AGNW和PEDOT:水凝胶中的PSS NP需要进一步研究以避免细胞毒性,但PTNW掺杂的Gelma表现出可比的活细胞密度。这种基于GLN的MEA有望是下一代生物活性神经界面。