摘要本文考虑使用频率调制的连续波(FMCW)信号和多输入多输出(MIMO)虚拟阵列之间的汽车雷达之间的相互减轻。在第一次,我们得出了一个空间域干扰信号模型,不仅说明了时间频的不连贯性(例如,不同的fmcw参数和时间O效应),而且还解释了较慢的时间模拟参数和时间opimo代码,并且阵列conerence conscorence Incoherence coherence coherence confuration confuration diefiration die-er-Er-Er-Ectects rand condence rances rances rad rack rad and conding rad racked and Accessinging Accessinging actinging brading actinging actinging actinging actinging rockinging brading brading。使用标准MIMO-FMCW对象信号模型使用显式干扰信号模型,我们将干扰缓解措施变成不一致的MIMO-FMCW干扰下的空间域对象检测。通过在传输和接收转向矢量空间时利用派生干扰模型的结构特性,我们通过波束成形优化得出检测器,以实现良好的检测性能,并进一步提出了该检测器的自适应版本,以增强其实际适用性。使用分析闭合形式表达式,合成级仿真和系统级模拟确认我们对所选基线方法的效果的效果。
摘要: - 使用传统的通道估计,以性能和服务的可靠性损害了高端数据的多个输入和多重输出系统。此外,各种因素的衰老影响,例如时间,频率,繁殖和多径降低,性能无法达到下一代无线通信系统的水平。为了解决噪声和服务问题,通道估计方法继续转移到神经网络和机器学习的领域。机器学习(ML)的效率和实用性丰富了所有网络方案中的通道估计能力。基于神经网络的模型提高了最小二乘(LS)和LMMSE通道估计(如线性和固定)的性能。非线性和非静止的切换神经网络模型的效率受到损害,但特定模型有效地工作,例如RNN和CNN。本文介绍了基于机器学习的通道估计方法的通道估计和分析的压缩研究。在不同褪色条件下,通道估计的分析适用于MIMO系统。机器学习算法可以从许多培训数据中学习通道结构并估算渠道。此外,我们分析了不同数据大小的不同ML算法的性能。基于我们的分析和仿真结果,机器学习在MIMO Systems
摘要 近年来,流体天线系统 (FAS) 作为 6G 无线网络的潜在竞争者而备受关注。流体天线多址 (FAMA) 是一种新技术,它允许每个用户通过单 RF 链端口流体天线不断移动到信号干扰比 (SIR) 最强的位置。FAMA 的研究工作主要集中于从多个方面提出与增强 FAMA 相关的模型和解决方案,包括 FAS 系统、增强正交和非正交多址、信道建模、分集增益、人工智能 (AI) 技术、FAMA 与其他 6G 新兴技术如智能反射面 (IRS)、多输入多输出 (MIMO)、太赫兹 (THz) 通信等。目前尚无涵盖 FAMA 所有这些重要方面的调查。基于几个关注点,本研究提出了 FAMA 的综合分类。首先,讨论 FAS 系统。然后,介绍 FAMA 机制及其信道建模和分集增益。随后,我们将 FAMA 与 IRS、MIMO、THz 通信等其他新兴技术相结合,并提供了增强 FAMA 的 AI 方法。最后,我们介绍了各个领域进一步研究的潜在研究方向。在设计和增强 FAS 系统、通过 FAMA 促进通信以及将其与 6G 的其他尖端技术相结合时,本文可以作为参考或指导。
需要完善的通信基础设施来促进增长,这是 2020 年欧洲数字议程的一部分。目标包括到 2020 年,所有家庭将拥有 >30 Mbit/s 的互联网接入,50% 的家庭将拥有 >100 Mbit/s 的接入。再加上无线设备的预期增长,将推动核心网络对带宽的需求增加。本 SRT 呼吁开发计量基础设施来支持这一战略。先进的天线和 MIMO 的 OTA 测试带来了重大的计量挑战。目前可用的测试方法使用模拟环境的信道模拟器和混响室。需要不确定性数据来验证自适应系统(如微型卫星、MIMO 和动态定向天线系统)的测试结果,这些系统将出现在未来的 RF 传感器网络和可穿戴天线系统中。纳米卫星代表了一种低成本的空间工程方法,这种方法正变得越来越有吸引力。纳米卫星天线、有效载荷和太阳能电池板系统的测试需要良好的计量和多学科方法。包括无源光网络 (PON) 和 RoF 在内的几种技术已被确定为通信网络“最后一英里”分布的候选技术,这是一个对价格极为敏感的领域。RoF 具有在 60 GHz 频段实现高带宽、短距离、视距通信的潜力。
需要完善的通信基础设施来促进增长,这是 2020 年欧洲数字议程的一部分。目标包括到 2020 年,所有家庭将拥有 >30 Mbit/s 的互联网接入,50% 的家庭将拥有 >100 Mbit/s 的接入。再加上无线设备的预期增长,将推动核心网络对带宽的需求增加。本 SRT 呼吁开发计量基础设施来支持这一战略。先进的天线和 MIMO 的 OTA 测试带来了重大的计量挑战。目前可用的测试方法使用模拟环境的信道模拟器和混响室。需要不确定性数据来验证自适应系统(如微型卫星、MIMO 和动态定向天线系统)的测试结果,这些系统将出现在未来的 RF 传感器网络和可穿戴天线系统中。纳米卫星代表了一种低成本的空间工程方法,这种方法正变得越来越有吸引力。纳米卫星天线、有效载荷和太阳能电池板系统的测试需要良好的计量和多学科方法。包括无源光网络 (PON) 和 RoF 在内的几种技术已被确定为通信网络“最后一英里”分布的候选技术,这是一个对价格极为敏感的领域。RoF 具有在 60 GHz 频段实现高带宽、短距离、视距通信的潜力。
在捷克共和国以外或与捷克共和国就教育文件等效性相互承认达成同等协议的国家以外接受高等教育,必须按照该法(第 48 条)和 BUT 校长关于 BUT 入学外国教育评估指令(经修订)规定的程序进行。如果在提交申请时无法提供教育证明,则必须提供理由(例如,申请提交早于州期末考试日期)。 b) 应聘者的英文简历。 c) 申请人声明,其中申请人描述了他/她对研究主题的动机和兴趣,
计算机工程博士 2017 年 1 月 10 日 - 12 月 德克萨斯 A&M 大学,德克萨斯州大学城 导师:Gwan S. Choi 博士,德克萨斯 A&M 大学 论文题目:下一代电信系统物理层实现的硬件解决方案。 • 提取基于固定复杂度球面解码方法的迭代 MIMO 接收器的最佳实现参数,并展示/比较实现结果。 • 研究在中继信道环境中 MIMO 的整数强制方法的实现。 电子工程硕士 2003 年 9 月 - 2006 年 10 月 德黑兰大学,伊朗德黑兰 导师:S. Mehdi Fakhraie,德黑兰大学 论文题目:用作实现参考的 IEEE 802.16 标准的 Bit-True 建模。 • 在 WiMAX 收发器定点建模后,提取维特比解码器最佳硬件实现的参数,目标是性能损失最多为 0.5 dB。电子工程专业 1999 年 9 月 - 2003 年 9 月 德黑兰理工学院,德黑兰,伊朗 导师:Hamed Sadjedi,沙希德大学 论文题目:连接到计算机的 ADC/PWM 卡:在 Xilinx FPGA 上实现。 • 该卡用于控制具有给定温度模式的孵化器。
1。简介MIMO-OTF可以进一步提高频谱效率,而OFDM则提供了易于实现,对多径褪色和窄带干扰的强大弹性以及出色的光谱效率。OTFS调制是一种有前途的方法,用于确保在人们四处走动的情况下确保可靠的通信。无线通信自1960年代以来一直在迅速发展,其中LTE是新产生无线传输框架的主要方法之一。LTE高级(LTE-A)框架使用MIMO和OFDM方法来实现最大数据速率通信。MIMO在当前无线框架中的动机是改善容量受限的系统,质量和包容性改进,滥用长期评估以扩大限制,包含范围以及无线框架的信息传输可靠性[1]。普遍的无线框架之一是无线局域网(WLANS),其互连笔记本电脑,个人数字助手(PDA),手机和其他手持式小工具如图1.LTE是一种无线和移动通信技术,与其他技术相比,它具有新功能和优势[2]。其主要目标包括提高下行链路和上行链路数据速率,灵活的数据传输能力,提高幽灵熟练的能力以及提高客户端的限制。lte/lte-a正在将过境中的沟通进步提高到5G传输方案,如图2所示。_____________________________ *通讯作者:ali.j.r@alkafeel.edu.iq
11 1 Eren Balevi,Akash Doshi,Ajil Jalal,Alexandros DiMakis,Jeffrey G. Andrews,“使用深层生成网络的高维通道估计”,IEEE JSAC,2021年; 2 RP-213599,“新SI:NR空气界面的人工智能研究(AI)/机器学习(ML)”,3GPP RAN PLENARY,2021年; 3 Chao-kai Wen,Wanting Shih,Shi Jin,“大量Mimo CSI反馈的深度学习”,IEEE无线通讯,2018年;
完成NPTEL在线认证课程于2023年7月至2023年10月。完成NPTEL在线认证课程,有关2023年7月至2023年10月的“在线社交媒体中的隐私和安全性”课程。从2023年1月至2023年4月完成了“云计算”的NPTEL在线认证课程。完成的NPTEL在线认证课程于2022年7月至2022年10月。从2022年8月至2022年10月完成了“基于认证和结果学习”的NPTEL在线认证课程。完成了科罗拉多大学系统授权并通过Coursera提供的“虚拟现实简介”的在线认证课程。(2020年5月)。完成了科罗拉多大学系统授权并通过Coursera提供的“网络通信基础”的在线认证课程。(2020年6月)。完成的Iucee国际工程教育家认证2020年10月。完成了六个月的基本心理学,学生心理学,咨询技能,咨询学生方法的电子学习计划。(2019年7月至12月2019年)。完成了关于“现代CDMA/MIMO/OFDM无线通信原则”的NPTEL在线认证课程。完成NPTEL在线认证课程,有关“ MIMO/OFDM无线通信的信号估计原理”的2018年7月至2018年10月。完成的商务英文证书初步级别(2016年8月)。