现代化:为了提高地下矿山的现代化和机械化水平,在56号NOS中引入了通过部署LHD/SDL的中级技术。地雷。 截至31.03.2024,202 nos。 SDLS,37号。 LHD和137号。 UDM的在不同的地下矿山中正在滚动(包括初始测量设备)。在2023-24中,SDLS的生产为3.125吨,LHDS的lhds为0.642 MT,来自2个NOS。 HighWall为0.728吨,从1号。 ROAD标头(Longwall套件的一部分)为0.015吨。 通过部署连续矿工与航天飞机(11套套装)结合使用的“大众生产技术”已在Jhanjra,Sarpi,Kumardih-B UG,Khottadih UG和Tilaboni Projects部署,并正在成功运行。 在2023-24期间从5个NOS实现的生产。 标准高度连续矿工和6个NOS的。 低高度连续矿工为4.127吨。 在Jhanjra,Longwall Technology自2016年8月以来成功运行,2023-24期间的生产为0.557 MT(不包括Road Header)。 2023-24期间的总体地下煤生产是9.183吨。地雷。截至31.03.2024,202 nos。SDLS,37号。 LHD和137号。 UDM的在不同的地下矿山中正在滚动(包括初始测量设备)。在2023-24中,SDLS的生产为3.125吨,LHDS的lhds为0.642 MT,来自2个NOS。 HighWall为0.728吨,从1号。 ROAD标头(Longwall套件的一部分)为0.015吨。 通过部署连续矿工与航天飞机(11套套装)结合使用的“大众生产技术”已在Jhanjra,Sarpi,Kumardih-B UG,Khottadih UG和Tilaboni Projects部署,并正在成功运行。 在2023-24期间从5个NOS实现的生产。 标准高度连续矿工和6个NOS的。 低高度连续矿工为4.127吨。 在Jhanjra,Longwall Technology自2016年8月以来成功运行,2023-24期间的生产为0.557 MT(不包括Road Header)。 2023-24期间的总体地下煤生产是9.183吨。SDLS,37号。LHD和137号。 UDM的在不同的地下矿山中正在滚动(包括初始测量设备)。在2023-24中,SDLS的生产为3.125吨,LHDS的lhds为0.642 MT,来自2个NOS。 HighWall为0.728吨,从1号。 ROAD标头(Longwall套件的一部分)为0.015吨。 通过部署连续矿工与航天飞机(11套套装)结合使用的“大众生产技术”已在Jhanjra,Sarpi,Kumardih-B UG,Khottadih UG和Tilaboni Projects部署,并正在成功运行。 在2023-24期间从5个NOS实现的生产。 标准高度连续矿工和6个NOS的。 低高度连续矿工为4.127吨。 在Jhanjra,Longwall Technology自2016年8月以来成功运行,2023-24期间的生产为0.557 MT(不包括Road Header)。 2023-24期间的总体地下煤生产是9.183吨。LHD和137号。在不同的地下矿山中正在滚动(包括初始测量设备)。在2023-24中,SDLS的生产为3.125吨,LHDS的lhds为0.642 MT,来自2个NOS。HighWall为0.728吨,从1号。ROAD标头(Longwall套件的一部分)为0.015吨。 通过部署连续矿工与航天飞机(11套套装)结合使用的“大众生产技术”已在Jhanjra,Sarpi,Kumardih-B UG,Khottadih UG和Tilaboni Projects部署,并正在成功运行。 在2023-24期间从5个NOS实现的生产。 标准高度连续矿工和6个NOS的。 低高度连续矿工为4.127吨。 在Jhanjra,Longwall Technology自2016年8月以来成功运行,2023-24期间的生产为0.557 MT(不包括Road Header)。 2023-24期间的总体地下煤生产是9.183吨。ROAD标头(Longwall套件的一部分)为0.015吨。通过部署连续矿工与航天飞机(11套套装)结合使用的“大众生产技术”已在Jhanjra,Sarpi,Kumardih-B UG,Khottadih UG和Tilaboni Projects部署,并正在成功运行。在2023-24期间从5个NOS实现的生产。。低高度连续矿工为4.127吨。在Jhanjra,Longwall Technology自2016年8月以来成功运行,2023-24期间的生产为0.557 MT(不包括Road Header)。2023-24期间的总体地下煤生产是9.183吨。
提供此项投资的简要摘要和理由,包括简要说明此项投资如何部分或全部弥补已确定的机构绩效差距:MSHA 标准化信息系统 (MSIS) 构成了 MSHA 的核心管理信息系统。它为 MSHA 执行《矿山法》(1977 年)、30 CFR 和《MINER 法》(2006 年)的要求提供了关键支持。MSIS 拥有超过 12,000 名用户,是 MSHA 目标企业架构 (EA) 的支柱。MSIS 与 FEA 中的劳动力管理业务线、工人安全子功能保持一致。MSIS 于 1999 年启动,旨在提供一个企业范围的框架,用于整合和现代化多个遗留 IT 系统并适应扩展以支持新功能。MSIS 是一个具有集成数据库结构的基于 Web 的应用程序。使用这种“伞状”企业应用程序弥补了低效、烟囱式、遗留系统造成的性能差距,提高了实现业务目标的效率、互操作性、功能性和有效性。这个集成平台还产生了规模经济并简化了维护,从而节省了成本。最终结果是改进了数据收集、数据及时性和准确性、传播、报告和管理支持。所有这些都支持 MSHA 保护我们国家矿工安全和健康的使命。许多具体的好处是真实的
药品评论在为医疗专业人士和消费者提供关键的医疗保健信息方面发挥着非常重要的作用。客户正在利用在线评论网站发表意见并表达对所体验药物的看法。然而,潜在买家通常很难在做出购买决定之前浏览所有评论。另一个巨大的挑战是评论的非结构化和文本性质,这使得读者很难将评论分类为有意义的见解。出于这些原因,本文主要旨在通过使用 SAS® Enterprise Miner™ 中的文本分析和预测模型对处方药的副作用水平和有效性水平进行分类。此外,本文还通过 SAS® Visual Text Analytics 中的情绪分析和文本挖掘探讨了每种处方药的具体有效性和潜在副作用。研究结果表明,副作用水平分类的最佳模型是基于规则的模型,验证错误分类率为 27.1%。关于有效性水平分类,文本规则构建器模型也表现最佳,验证错误分类率为 22.4%。通过使用迁移学习算法评估性能和泛化,进一步验证了这些模型。研究结果可用于制定实用指南和有用的参考资料,以帮助潜在患者做出更明智的购买决定。
références1。Mizushima N,Levine B,Cuervo AM,Klionsky DJ。自噬通过细胞自我消化与疾病作斗争。自然。2008年2月28日; 451(7182):1069–75。 2。 Mizushima N,Komatsu M.自噬:细胞和组织的翻新。 单元格。 2011年11月11日; 147(4):728–41。 3。 Pierrefite-Carle V,Santucci-Darmanin S,Breuil V,Camuzard O,Carle GF。 骨骼中的自噬:保持平衡。 老化Res Rev. 2015年11月; 24(pt b):206-17。 4。 Liu F,Fang F,Yuan H等。 通过抑制成骨细胞末端分化,FIP200缺失对自噬的抑制导致小鼠的骨质减少。 J骨矿工销售J Am Soc Bone Miner Res。 2013年11月; 28(11):2414–30。 5。 Nollet M,Santucci-Darmanin S,Breuil V等。 成骨细胞中的自噬参与矿化和骨稳态。 自噬。 2014年12月18日; 10(11):1965–77。 6。 Zhao Y,Chen G,Zhang W等。 自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。 J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。2008年2月28日; 451(7182):1069–75。2。Mizushima N,Komatsu M.自噬:细胞和组织的翻新。单元格。2011年11月11日; 147(4):728–41。3。Pierrefite-Carle V,Santucci-Darmanin S,Breuil V,Camuzard O,Carle GF。骨骼中的自噬:保持平衡。老化Res Rev.2015年11月; 24(pt b):206-17。 4。 Liu F,Fang F,Yuan H等。 通过抑制成骨细胞末端分化,FIP200缺失对自噬的抑制导致小鼠的骨质减少。 J骨矿工销售J Am Soc Bone Miner Res。 2013年11月; 28(11):2414–30。 5。 Nollet M,Santucci-Darmanin S,Breuil V等。 成骨细胞中的自噬参与矿化和骨稳态。 自噬。 2014年12月18日; 10(11):1965–77。 6。 Zhao Y,Chen G,Zhang W等。 自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。 J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。2015年11月; 24(pt b):206-17。4。Liu F,Fang F,Yuan H等。 通过抑制成骨细胞末端分化,FIP200缺失对自噬的抑制导致小鼠的骨质减少。 J骨矿工销售J Am Soc Bone Miner Res。 2013年11月; 28(11):2414–30。 5。 Nollet M,Santucci-Darmanin S,Breuil V等。 成骨细胞中的自噬参与矿化和骨稳态。 自噬。 2014年12月18日; 10(11):1965–77。 6。 Zhao Y,Chen G,Zhang W等。 自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。 J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。Liu F,Fang F,Yuan H等。通过抑制成骨细胞末端分化,FIP200缺失对自噬的抑制导致小鼠的骨质减少。J骨矿工销售J Am Soc Bone Miner Res。2013年11月; 28(11):2414–30。5。Nollet M,Santucci-Darmanin S,Breuil V等。 成骨细胞中的自噬参与矿化和骨稳态。 自噬。 2014年12月18日; 10(11):1965–77。 6。 Zhao Y,Chen G,Zhang W等。 自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。 J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。Nollet M,Santucci-Darmanin S,Breuil V等。成骨细胞中的自噬参与矿化和骨稳态。自噬。2014年12月18日; 10(11):1965–77。6。Zhao Y,Chen G,Zhang W等。 自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。 J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。Zhao Y,Chen G,Zhang W等。自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。J细胞生理。2012年2月; 227(2):639–48。7。DeSelm CJ,Miller BC,Zou W等。自噬蛋白调节整骨骨吸收的分泌成分。DEV单元格。2011年11月15日; 21(5):966–74。8。Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。Sànchez-Riera L,Wilson N,Kamalaraj N等。骨质疏松和脆弱性骨折。最佳实践临床风湿性。9。2010年12月; 24(6):793–810。Almeida M,O'Brien CA。 骨骼老化的基本生物学:应力反应途径的作用。 J Gerontol A Biol Sci Med Sci。 2013年10月; 68(10):1197–208。 10。 Manolagas SC,Parfitt AM。 旧的对骨骼意味着什么。 趋势内分泌代替tem。 2010 Jun; 21(6):369–74。 11。 Gavali S,Gupta MK,Daswani B,Wani MR,Sirdeshmukh R,Khatkhatay Mi。 雌激素通过促进自噬来增强人类成骨细胞的存活和功能。 Biochim Biophys acta mol Cell Res。 2019年9月; 1866(9):1498–507。 12。 Cheng L,Zhu Y,Ke D,XieD。雌激素活化的自噬对雌激素的抗αsteocolasogenation具有负面影响。 细胞增殖[Internet]。 2020年3月11日[引用2020年10月12日]; 53(4)。 可从:https://www.ncbi.nlm.nih.gov/pmc/articles/pmc7162800/ 13。 pan F,Liu X-G,Guo Y-F等。 自助途径的调节可能会影响中国的地位变化:老年人的证据。 j hum Genet。 2010年7月; 55(7):441–7。 14。 Zhang L,Guo Y-F,Liu Y-Z等。 基于途径的全基因组关联分析确定了自噬途径对超前半径BMD的重要性。 J骨矿工销售J Am Soc Bone Miner Res。 2010年7月; 25(7):1572–80。 15。 Chen K,Yang Y-H,Jiang S-D,Jiang L-S。 随着衰老的衰老,骨细胞自噬的活性降低可能导致老年人群的骨质流失。 组织化学细胞生物。 16。Almeida M,O'Brien CA。骨骼老化的基本生物学:应力反应途径的作用。J Gerontol A Biol Sci Med Sci。2013年10月; 68(10):1197–208。10。Manolagas SC,Parfitt AM。旧的对骨骼意味着什么。趋势内分泌代替tem。2010 Jun; 21(6):369–74。11。Gavali S,Gupta MK,Daswani B,Wani MR,Sirdeshmukh R,Khatkhatay Mi。雌激素通过促进自噬来增强人类成骨细胞的存活和功能。Biochim Biophys acta mol Cell Res。2019年9月; 1866(9):1498–507。12。Cheng L,Zhu Y,Ke D,XieD。雌激素活化的自噬对雌激素的抗αsteocolasogenation具有负面影响。细胞增殖[Internet]。2020年3月11日[引用2020年10月12日]; 53(4)。可从:https://www.ncbi.nlm.nih.gov/pmc/articles/pmc7162800/ 13。pan F,Liu X-G,Guo Y-F等。自助途径的调节可能会影响中国的地位变化:老年人的证据。j hum Genet。2010年7月; 55(7):441–7。14。Zhang L,Guo Y-F,Liu Y-Z等。 基于途径的全基因组关联分析确定了自噬途径对超前半径BMD的重要性。 J骨矿工销售J Am Soc Bone Miner Res。 2010年7月; 25(7):1572–80。 15。 Chen K,Yang Y-H,Jiang S-D,Jiang L-S。 随着衰老的衰老,骨细胞自噬的活性降低可能导致老年人群的骨质流失。 组织化学细胞生物。 16。Zhang L,Guo Y-F,Liu Y-Z等。基于途径的全基因组关联分析确定了自噬途径对超前半径BMD的重要性。J骨矿工销售J Am Soc Bone Miner Res。2010年7月; 25(7):1572–80。15。Chen K,Yang Y-H,Jiang S-D,Jiang L-S。 随着衰老的衰老,骨细胞自噬的活性降低可能导致老年人群的骨质流失。 组织化学细胞生物。 16。Chen K,Yang Y-H,Jiang S-D,Jiang L-S。随着衰老的衰老,骨细胞自噬的活性降低可能导致老年人群的骨质流失。组织化学细胞生物。16。2014年9月; 142(3):285–95。Camuzard O,Santucci-Darmanin S,Breuil V等。成骨细胞谱系中的性别特异性自噬调制:抵消女性骨质流失的关键功能。oncotarget。2016年10月11日; 7(41):66416–28。17。Yang Y,Zheng X,Li B,Jiang S,Jiang L.卵巢切除大鼠中骨细胞自噬的活性增加,及其与氧化应激状态和骨骼丧失的相关性。Biochem Biophys Res Commun。2014年8月15日; 451(1):86–92。18。Luo D,Ren H,Li T,Lian K,LinD。雷帕霉素通过激活骨细胞自噬来降低老年骨质疏松症的严重程度。骨质骨int j stuph Result coop eur发现了美国的骨质骨骨骨质骨。2016年3月; 27(3):1093–101。19。yuan Y,Fang Y,Zhu L等。 造血自噬的恶化与骨质疏松症有关。 老化细胞。 2020; 19(5):E13114。 20。 Kneissel M,Luong-Nguyen N-H,Baptist M等。 依维莫司通过破骨细胞抑制取消骨质流失,骨吸收和组织蛋白酶K的表达。 骨头。 2004年11月; 35(5):1144–56。 21。 Jia D,O'Brien CA,Stewart SA,Manolagas SC,Weinstein RS。 糖皮质激素直接作用于破骨细胞,以增加其寿命并降低骨密度。 内分泌学。 2006年12月; 147(12):5592–9。 22。 Kim H-J,Zhao H,Kitaura H等。 糖皮质激素通过破骨细胞抑制骨形成。 J Clin Invest。 2006年8月; 116(8):2152–60。 23。 24。yuan Y,Fang Y,Zhu L等。造血自噬的恶化与骨质疏松症有关。老化细胞。2020; 19(5):E13114。20。Kneissel M,Luong-Nguyen N-H,Baptist M等。依维莫司通过破骨细胞抑制取消骨质流失,骨吸收和组织蛋白酶K的表达。骨头。2004年11月; 35(5):1144–56。 21。 Jia D,O'Brien CA,Stewart SA,Manolagas SC,Weinstein RS。 糖皮质激素直接作用于破骨细胞,以增加其寿命并降低骨密度。 内分泌学。 2006年12月; 147(12):5592–9。 22。 Kim H-J,Zhao H,Kitaura H等。 糖皮质激素通过破骨细胞抑制骨形成。 J Clin Invest。 2006年8月; 116(8):2152–60。 23。 24。2004年11月; 35(5):1144–56。21。Jia D,O'Brien CA,Stewart SA,Manolagas SC,Weinstein RS。 糖皮质激素直接作用于破骨细胞,以增加其寿命并降低骨密度。 内分泌学。 2006年12月; 147(12):5592–9。 22。 Kim H-J,Zhao H,Kitaura H等。 糖皮质激素通过破骨细胞抑制骨形成。 J Clin Invest。 2006年8月; 116(8):2152–60。 23。 24。Jia D,O'Brien CA,Stewart SA,Manolagas SC,Weinstein RS。糖皮质激素直接作用于破骨细胞,以增加其寿命并降低骨密度。内分泌学。2006年12月; 147(12):5592–9。22。Kim H-J,Zhao H,Kitaura H等。 糖皮质激素通过破骨细胞抑制骨形成。 J Clin Invest。 2006年8月; 116(8):2152–60。 23。 24。Kim H-J,Zhao H,Kitaura H等。糖皮质激素通过破骨细胞抑制骨形成。J Clin Invest。2006年8月; 116(8):2152–60。 23。 24。2006年8月; 116(8):2152–60。23。24。Lin N-Y,Chen C-W,Kagwiria R等。 自噬的灭活可改善糖皮质激素诱导的卵巢切除术引起的骨质损失。 Ann Rheum Dis。 2016; 75(6):1203–10。 fu L,Wu W,Sun X,ZhangP。糖皮质激素通过PI3K/AKT/MTOR信号通路增强了破骨细胞自噬。 Calcif Tissue int。 2020 Jul; 107(1):60–71。Lin N-Y,Chen C-W,Kagwiria R等。自噬的灭活可改善糖皮质激素诱导的卵巢切除术引起的骨质损失。 Ann Rheum Dis。 2016; 75(6):1203–10。 fu L,Wu W,Sun X,ZhangP。糖皮质激素通过PI3K/AKT/MTOR信号通路增强了破骨细胞自噬。 Calcif Tissue int。 2020 Jul; 107(1):60–71。自噬的灭活可改善糖皮质激素诱导的卵巢切除术引起的骨质损失。Ann Rheum Dis。 2016; 75(6):1203–10。 fu L,Wu W,Sun X,ZhangP。糖皮质激素通过PI3K/AKT/MTOR信号通路增强了破骨细胞自噬。 Calcif Tissue int。 2020 Jul; 107(1):60–71。Ann Rheum Dis。2016; 75(6):1203–10。 fu L,Wu W,Sun X,ZhangP。糖皮质激素通过PI3K/AKT/MTOR信号通路增强了破骨细胞自噬。 Calcif Tissue int。 2020 Jul; 107(1):60–71。2016; 75(6):1203–10。fu L,Wu W,Sun X,ZhangP。糖皮质激素通过PI3K/AKT/MTOR信号通路增强了破骨细胞自噬。Calcif Tissue int。2020 Jul; 107(1):60–71。
BOZRAH 镇,Glenn Pianka,镇长 COLCHESTER 镇,Bernie Dennler,镇长 EAST LYME 镇,Dan Cunningham,镇长 FRANKLIN 镇,Alden Miner,镇长* GRISWOLD 镇,Tina Falck,镇长 JEWETT CITY 自治市,Laurie Sorder,区长 GROTON 市,Keith Hedrick,市长 GROTON 镇,Rachael Franco,市长,候补 John Burt,镇长 LEBANON 镇,Kevin Cwikla,镇长* LEDYARD 镇,Fred Allyn, III,市长* LISBON 镇,Thomas Sparkman,镇长 MONTVILLE 镇,Lenny Bunnell,市长 NEW LONDON 市,Michael Passero,市长 NORTH STONINGTON 镇,Robert Carlson,镇长*诺维奇,彼得·尼斯特罗姆 (Peter Nystrom),市长,候补 约翰·萨洛蒙 (John Salomone),市政经理 普雷斯顿镇,桑德拉·高蒂尔 (Sandra Gauthier),市长* 塞勒姆镇,埃德·赫米耶莱夫斯基 (Ed Chmielewski),市长 斯普拉格镇,谢丽尔·布兰查德 (Cheryl Blanchard),市长* 斯托宁顿镇,丹妮尔·切塞布罗 (Danielle Chesebrough),市长* 斯托宁顿自治市镇,迈克尔·谢弗斯 (Michael Schefers),市长 沃特福德镇,罗布·布鲁尔 (Rob Brule),市长* 温德姆镇,托马斯·德维沃 (Thomas DeVivo),市长,*候补 吉姆·里弗斯 (Jim Rivers),市政经理
KSRTC(卡纳塔克邦公路运输公司)是印度最大的公共交通公司之一。根据 KSRTC 2020 年 12 月的数据,每天有 129.3 万名乘客出行,40% 的公交车在同月发生过小事故和重大事故,KSRTC 还报告称,每 2 至 4 公里就有 2000 升燃油浪费。利用人工智能进行公交线路客流预测是一项突破性的应用,它利用决策树、ANN、RNN 和 LSTM 模型等人工智能算法和数据分析来预测和管理客流量和公交车容量。通过融合离线数据和机器学习模型,这项技术旨在彻底改变公共交通行业。通过预测分析,人工智能算法可以预测和预测一天中不同时间各个公交车站或特定路线的乘客量。主要目标是通过有效分配资源、调整时刻表和提升乘客体验来优化公交服务。通过预测拥挤程度,交通部门可以实施部署更多公交车、改变路线或调节班次频率等策略,以缓解拥挤并提高整体效率
D.,Belmont Scientific 10:00休息10:15 Ram-Dent Trigger方法开发Vincent Glover,NASA,Johnson Space Center 10:45被动预防锂离子电池中的热失控和火灾繁殖Vijay V. Vijay V. V. V. Devarakonda,Devarakonda,Ph.D.,Ph.D. Energy Cells Eric Darcy, NASA, Johnson Space Center 11:45 Lunch 1:30 Investigation of Electrically Conductive Aqueous Solutions for De-Energizing Lithium-Ion Batteries Alex Di Sciullo Jones, R&D Engineer, UL Solutions 2:00 GS Yuasa Generation 4 Li-Ion Cell and Battery Performance Update Tom Pusateri, GS Yuasa Lithium Power 2:30 Nanostructured Germanium thin fills as航空航天应用锂离子电池的阳极材料Valentina Diolaiti,A。Andreoli,G。Mangherini,D。Vincenzi,Ferrara大学物理与地球科学系; S. Chauque,M。Ricci,R.Z。Proietti,意大利技术研究所3:00休息3:15关于NASA应用的AL 4 AH零电压稳定性的研究Linhua(Steven)Hu,Ph.D。,Jiang Fan,Jiang Fan,Ph.D。 4:15使用热量表Surendra K. Singh博士,Belmont Scientific 4:45灵活需求太空站功能系统功能和特征Mark Miner,P.E.,P.E。,P.E.
(2) 在第 (II) 款中删去“或 2019 年”,并插入“2019 年或此后的任何一年”, (3) 在第 (II) 款的“;和”之前插入以下内容:“(或,在任何破产程序中确认的任何此类健康福利随后将被拒绝或减少)”,以及 (4) 在第二句中删去“2019 年 1 月 1 日”,并插入“2020 年 1 月 1 日”。 (b) 增加计算健康福利计划超额的限制——该法案第 402(i)(3) 条(30 USC 1232(i)(3))经修订,在末尾增加以下新子款:“(C) 增加计算健康福利计划超额的限制——子款 (A) 规定的金额限制应增加提供福利的成本金额,该成本金额仅因《2020 年美国矿工福利改进法案》第 2(a) 条所作的修订而根据第 (h)(2)(C)(ii) 款予以考虑。”。 (c) 申请—— (1) 一般规定——除第 (2) 款规定外,本节所做的修订应自本法颁布之日起生效。 (2) 第 (a)(3) 款——第 (a)(3) 款所做的修订应适用于 2019 年 12 月 31 日之后的拒绝和减免。
摘要:人工智能 (AI) 和机器学习的最新进展为聊天机器人在语言学习中的广泛应用铺平了道路。迄今为止发表的研究主要集中在学生或在职教师的角度研究聊天机器人的准确性和聊天机器人与人类的交流。本研究旨在考察未来教育工作者对将对话式人工智能融入语言学习的知识、满意度和看法。在这项基于便利抽样的混合方法研究中,来自两个教育环境(西班牙 (n = 115) 和波兰 (n = 61))的 176 名本科生在四周内与三个对话代理(Replika、Kuki、Wysa)进行了自主互动。本研究专门设计了一个关于人工智能和语言学习的学习模块,包括一个名为聊天机器人-人类交互满意度模型 (CHISM) 的临时模型,教师候选人使用该模型来评估三个对话代理的不同语言和技术特征。通过基于 CHISM 和 TAM2(技术接受度)模型的前后调查以及模板分析 (TA) 收集定量和定性数据,并通过 IBM SPSS 22 和 QDA Miner 软件进行分析。分析得出了关于对话代理在语言学习中的整合的看法的积极结果,特别是在感知易用性 (PeU) 和态度 (AT) 方面,但行为意图 (BI) 的得分较为温和。研究结果还揭示了参与者对聊天机器人设计和互动主题的满意度存在一些与性别相关的差异。
弗吉尼亚州煤矿安全法第 1 条规定了煤矿工人认证的要求。认证要求包含在第 45.2-515 至 45.2-534 条中,其中设立了煤矿检查委员会,以管理认证计划。委员会颁布了认证条例 4 VAC 25-20,其中规定了弗吉尼亚州煤矿工人考试和认证所需的最低标准和程序。弗吉尼亚州能源部的煤矿安全团队制定了本学习指南,以更好地帮助寻求认证的煤矿工人。所包含的材料并不全面,仅应被视为获取采矿实践、条件、法律和法规知识的辅助手段。本指南基于弗吉尼亚州煤矿安全法、弗吉尼亚州煤矿安全和健康条例、联邦法规第 30 条 (30 CFR)、州和联邦计划政策手册以及其他可用出版物。本文中的任何内容均不应被解释为推荐任何制造商的产品。学习指南和材料可通过弗吉尼亚能源部获得。每份指南都可通过该机构的网站 www.energy.virginia.gov 下载,印刷版可在弗吉尼亚能源公司的 Big Stone Gap 办公室购买。如对学习指南中的材料有任何疑问,请联系 Big Stone Gap 办公室的监管委员会管理员。