微型化是一种快速发展的方法,可用于生产非常小的电子、机械和光学产品和设备,包括计算机、半导体芯片、传感器、生物传感器、IC 和内置于车辆中的微处理器等等。如今,人们可以看到小型便携式设备,可以随时随地放在口袋中携带,其背后的原因是技术可以灵活地将组件微型化,并具有许多优点和应用。微型化不仅在电子产品中,还在纳米技术的进步中发挥着重要作用,这使得制造具有特殊功能和特性的各种结构成为可能。小尺寸和轻便性是混合微电路的优势;它们长期以来一直用于起搏器的除颤器、助听器、柔性聚酰亚胺结构和许多其他应用。便携式设备的微型化和集成化日益显著,可穿戴计算正在实现。本文旨在理解小型化的概念、其优点、缺点和应用
应用。 [3] 然而,尽管取得了这些进展,这些执行器要实现大输出力和高重量标准化工作能力(以下称为“工作能力”)仍然具有挑战性。 [4] 这是因为组成材料较软且体积有限,难以储存和释放高机械能。 [2d,5] 目前,大多数微型软执行器的工作能力相对较低,在 10 –3 至 10 2 J kg − 1 范围内(图 S1,支持信息),[3b,6] 这使得它们无法用于潜在的医疗器械、操作和其他需要高工作能力的应用。 [7] 此外,现有磁控软执行器的最大输出力约为 60 µN。然而,许多医疗程序,如支架植入术 [8] 要求装置的输出力超过 1 N,这约为磁控软执行器最大输出力的 10软气动执行器同时提供了高机械性能和柔顺性,使其在强力操控中得到了广泛的应用。[9] 具体而言,尽管杨氏模量较小(约为 10 kPa),但这些执行器可以提供高工作能力(9 J g-1),比大多数已报道的执行器的性能高出约 10 1 –10 3 倍。尽管形状记忆合金具有类似的工作能力,但它是执行器的 10 6 倍
随着年龄的增长,我们的大脑随着我们的年龄增长:我们发现学习新事物更加困难,而我们的记忆偶尔会使我们失败。,但有时症状可能不那么无害。衰老是神经退行性疾病(例如帕金森氏症和阿尔茨海默氏症)的危险因素,在神经细胞中,神经细胞特别快速地死亡。重要的大脑功能令人难以挽回地丢失,因为与皮肤细胞不同,人体一旦死亡就无法替代。
摘要 — 癫痫是一种神经系统疾病,其特征是由大脑异常电活动引起的突发和反复发作。反应性神经刺激 (RNS) 为药物难治性癫痫患者提供了一种有希望的治疗选择。反应性神经刺激 (RNS) 是一种采用闭环系统的植入式设备。它通过皮层脑电图 (ECoG) 记录持续监测大脑活动。当系统检测到癫痫发作活动时,它会向大脑发送直接电刺激以抑制癫痫发作。癫痫发作检测算法需要针对患者进行优化,这导致近年来人们对深度学习方法的兴趣日益浓厚。虽然更深的网络架构通常可以提高检测准确性,但它们在植入式设备中的实现受到硬件资源有限和可用于 ECoG 监测的电极通道数量有限的限制。为了确保 RNS 的实际可行性,系统地最小化患者特定深度学习模型的计算成本和连接的 ECoG 电极数量至关重要。本研究通过分析在 3D ECoG 数据上训练的 3D 卷积神经网络 (3D CNN) 的第一个卷积层学习到的时空核,系统地减少了癫痫检测模型中的电极通道数量和计算成本。这种方法充分利用了网络学习网格电极之间的空间关系和 ECoG 信号的时间动态的能力。缩小后的癫痫检测 CNN 模型与原始 CNN 模型之间的性能比较表明,至少对于某些患者,可以在减小模型尺寸的同时保持推理性能。
1. Atapattu, KV、Salibi, G. 和 Tzenios, N. (2023)。斯里兰卡科伦坡地区雨季与登革热爆发关系研究。医学研究院和其他生命科学专题杂志。,1 (3)。2. Morton Cuthrell, K.、Tzenios, N. 和 Umber, J. (2022)。自身免疫性疾病的负担;综述。亚洲免疫学杂志,6 (3),1-3。3. Sibanda, AM、Tazanios, M. 和 Tzenios, N. (2023)。社区赋权作为促进健康的工具。4. OFFIONG, BE、Salibi, G. 和 Tzenios, N. (2023)。非洲的医疗人才流失祸害:重点关注尼日利亚。5. Tzenios, N. (2023)。研究中的统计分析。6. JUSTUS, O.、Salibi, G. 和 Tzenios, N. (2023)。监测是疾病预防和控制的基础。
摘要 量子计算机规模化的一个关键挑战是多个量子位的校准和控制。在固态量子点 (QD) 中,稳定量化电荷所需的栅极电压对于每个单独的量子位都是唯一的,从而产生必须自动调整的高维控制参数空间。机器学习技术能够处理高维数据(前提是有合适的训练集),并且过去已成功用于自动调整。在本文中,我们开发了极小的前馈神经网络,可用于检测 QD 稳定图中的电荷状态转变。我们证明这些神经网络可以在计算机模拟产生的合成数据上进行训练,并稳健地转移到将实验设备调整为所需电荷状态的任务上。此任务所需的神经网络足够小,可以在不久的将来在现有的忆阻器交叉阵列中实现。这为在低功耗硬件上小型化强大的控制元件提供了可能性,这是未来 QD 计算机片上自动调整的重要一步。
摘要 软机器人因其固有的柔软性和柔顺性而受到越来越多的关注。然而,要充分发挥其潜力,通常需要许多软部件和执行器。大型系统面临的一个主要挑战是集成和小型化。此外,对于气动控制的执行器,多路复用对于减少控制阀的管道至关重要。通过在软材料 (PDMS) 中嵌入两层交互式通道 (2 n ) 来形成执行器 (n 2 ),通过在通道交叉点处累积行程和力,实现了仅通过 2 n 个控制信号对 n 2 个交叉点进行多路复用控制的小型化软气动执行器矩阵 (SPAM),这与产生恒定力的基于活塞的串联耦合气弹簧不同。研究了一种具有 2×4 个控制信号的 4×4 执行器的 SPAM 原型。在倾斜矩阵中演示了 SPAM,并在气动软传送带中使用两个耦合的 SPAM 进行平面操作。它的简单性和尺寸使其未来能够大规模集成到软机器人中。
2,3,4 ECE,Guru Nanak技术研究所,海得拉巴501506摘要:微型巡逻监视机器人是一个紧凑的,具有移动摄像头和无线通信系统的自动驾驶,机器人可以捕获实时的视频,interusions,Intusions,Intusions,interuse,并在诸如仓库之类的环境中捕获诸如bearses offeres,或者在途中识别出境内的安全威胁。 它的小尺寸使其能够在狭窄的走廊和难以到达的区域导航,从而使其非常适合室内监视。 具有遥控功能和自动巡逻路线,该机器人通过提供持续监视,减少对人类存在的需求并在关键情况下提供快速响应来增强安全措施。 关键字:监视机器人,自主系统,移动相机,无线通信系统,安全威胁2,3,4 ECE,Guru Nanak技术研究所,海得拉巴501506摘要:微型巡逻监视机器人是一个紧凑的,具有移动摄像头和无线通信系统的自动驾驶,机器人可以捕获实时的视频,interusions,Intusions,Intusions,interuse,并在诸如仓库之类的环境中捕获诸如bearses offeres,或者在途中识别出境内的安全威胁。它的小尺寸使其能够在狭窄的走廊和难以到达的区域导航,从而使其非常适合室内监视。具有遥控功能和自动巡逻路线,该机器人通过提供持续监视,减少对人类存在的需求并在关键情况下提供快速响应来增强安全措施。关键字:监视机器人,自主系统,移动相机,无线通信系统,安全威胁
图1:具有标准钝化为离子敏感层的CMOS ISFET,信号转换的扩展门电极和下方的MOSFET,对氢离子(H +)敏感。H +的吸附或释放改变了闸门的电池,这会改变源和排水之间的电流。因此,可以测量与与表面结合的H +离子成正比的电信号变化。与可自定义的特殊过程相比,标准CMOS流程中的ISFET可以开发和制造更具成本效益。,这也面临着几个挑战:首先,作为离子敏感层的标准钝化会引起对最大斜率的敏感性,因为在25°C时NERNST的59 mV/pH值和信号漂移中的59 mV/pH值。此外,ISFET的操作点移动和
我宣布已介绍并检查了正确的狗。违反此规定将导致该窝小狗无法登记/注销登记,挪威养犬俱乐部对此不承担任何责任。如果与主人和狗有关的所有身份都保密,样本将能够被自由用于研究,以改善该品种的健康状况。