摘要 — 安柏瑞德航空大学的 Minion 团队将重返 RobotX,对其卫冕冠军全自动水面舰艇 (ASV) Minion 进行重大改进。Minion 团队的新设计策略和系统工程方法称为 Minion Process,实现了整个团队在学术、研究和团队目标之间的平衡。这种设计策略与重视安全和创新的严格多步骤测试流程相结合,为 Minion 及其无人驾驶飞行器 (UAV) Kevin 带来了不断改进的工具集。这些包括对正在申请专利的新控制方案的软件增强和整个系统的计算机视觉更好地集成,以及对方位电机控制、新无人机功能和新球发射器的硬件改进。该团队对这些工具的赛前评估产生了一个强有力的竞争策略,其基础是最大化分数同时最小化风险。该团队的任务跟踪器 MinionTask 将根据评估的战略价值、已知的路线信息和剩余时间动态选择任务,以优化资格赛、半决赛和决赛中的比赛表现。根据模拟和水上测试的结果,Minion 队有信心完成九项 RobotX 2024 任务中的至少六项,并希望重复其冠军表现。
我们将要使用的数据是武汉海鲜市场肺炎爆发的元文字小奴才数据集[Chan等,2020]。对疾病的病毒进行采样涉及从患者那里获得痰,喉咙或鼻咽拭子或支气管肺泡灌洗液(BALF)样品。因此,样品将包含来自非病毒源的RNA。该数据集是使用独立于序列的单播放扩增(SISPA)方案来制备的,以进行其他病毒序列富集。
处理化学药品和生物剂时,您需要始终穿安全设备,包括实验室外套,手套和安全护目镜。虽然用于小麦感染的主要生物学剂是澳大利亚常见的病原体,但您必须将它们视为普遍关注的感染剂。谨慎对待他们。请勿将其从实验室中删除。不要通过衣服散布它们。使用专用的笔记本和笔在迷你研究项目中做笔记。在实验室中不要将任何东西放在嘴里。每次离开实验室时洗手。
摘要:近年来,气候变化的问题在全球范围内都提高了人们的意识和关注。它对世界各地的生态系统产生了各种影响,导致许多物种在环境上受到压力。表观遗传学是一个关于气候变化的概念,正在更普遍地研究。由于环境的变化,可能会出现压力引起的遗传性状,而不会改变基因组代码(称为表观遗传学改变)。这样的表观遗传改变是DNA甲基化,它发生在细胞对环境应激的反应中。菲律宾负担得起的蛋白质的一个主要来源来自野生圆形SCAD鱼,该鱼的人口和体型最近都面临着迅速下降的速度。我们研究的目的是探索野生圆形SCAD中DNA甲基化的模式,以确定这些变化是否与对全球气候压力的表观遗传反应有关。收集圆形SCAD DNA的样品并从菲律宾分离出来。使用纳米孔小牛仔群(一种便携式第三代DNA测序技术),我们能够获得检测甲基化位点所需的高质量DNA序列。但是,DNA序列短,需要改进。为了促进我们的分析,我们正在测序斑马鱼的基因组以进行比较。在这里,我们将报告收集的初始数据。我们预计,该项目的长期发现将提供关键的信息,以管理面对类似环境压力源的野生圆形SCAD和其他海洋鱼类。
在使用Tethers帮助将DNA端子运输到毛孔的情况下,创建了奴才库,因此无法创建库后的尺寸选择(由于电泳是由于电泳而去除的)。因此,在创建库之前必须执行尺寸选择。另一方面,在创建库或多次执行的AMPURE XP纯化的干燥步骤时,DNA在移液器期间略有碎片,因此,即使执行了尺寸选择,也会在序列数据中读取短DNA,但是如果未执行尺寸选择,则较短读取的比例也会增加。客户评论
U技术包括 - Sanger,Illumina(短阅读),PACBIO(长阅读),Minion,Nanobore - 始终开发更多的时间
水传播植物的致病真菌和卵菌是温室生产系统中的主要威胁。对这些病原体的早期检测和量化将使我们能够及时治疗所需的经济和生物阈值,从而改善有效的疾病管理。在这里,我们使用了牛津纳米孢子的扩增子来分析从用于生长番茄,黄瓜和Aeschynanthus sp的温室收集的灌溉水中的微生物群落。真菌和卵形群落的特征是使用放大整体内部转录垫片(ITS)区域的引物。为了评估小兵测序的灵敏度,我们将串行稀释的模拟DNA刺激到图书馆制备之前从温室水样品中分离的DNA中。真菌和卵骨读数的相对丰盛在温室灌溉水中和来自番茄番茄的设置中的水样中与众不同。在相应的连续稀释样品中衍生出的源自真菌和卵形模拟群落的序列读数是成比例的,因此确认了最小值扩增子测序对环境监测的适用性。通过使用尖峰标准来测试使用小兵测试定量的可靠性,我们发现样品中尖峰ins的检测受到了真菌或卵形DNA的背景量的高度影响。我们观察到,与较长的尖峰(> 790bp)相比,我们大多数稀释液的长度较短(538bp)的尖峰在我们的大部分稀释液中产生。此外,相对于稀释序列,序列读数不均匀,并且在具有最高DNA浓度的背景样品中最不可检索,这表明性能的动态范围狭窄。我们建议对小兵测序进行连续的基准测试,以改善未来快速植物性诊断和监测的定量元编码工作。
由于旁系同源、复杂的单倍型结构或串联重复,人类基因组的很大一部分难以用短读 DNA 测序技术进行检测。长读测序技术(例如 Oxford Nanopore 的 MinION)能够直接测量复杂的位点,而不会引入短读方法固有的许多偏差,尽管它们的通量相对较低。这一限制促使人们最近努力开发无扩增策略来定位和富集感兴趣的位点,以便随后用长读进行测序。在这里,我们介绍了 CaBagE,这是一种高效且有用的靶标富集方法,可用于对大型、结构复杂的靶标进行测序。CaBagE 方法利用 Cas9 与其 DNA 靶标的稳定结合来保护所需片段不被核酸外切酶消化。然后使用 Oxford Nanopore 的 MinION 长读测序技术对富集的 DNA 片段进行测序。使用健康供体 DNA 对长度为 4-20kb 的五个基因组靶标进行测试时,使用 CaBagE 进行富集可获得 116X 覆盖率(范围为 39-416)的靶标位点中位数。四种癌症基因靶标在单个反应中富集并在单个 MinION 流动槽中进行多路复用。我们进一步证明了 CaBagE 在两名具有 C9orf72 短串联重复扩增的 ALS 患者中的效用,以产生与每个个体的重复引发 PCR 得出的基因型相称的基因型估计值。使用 CaBagE,可以在测序之前对给定样本中的靶标 DNA 进行物理富集。此功能允许跨测序平台进行适应性,并可能用作测序以外应用的富集策略。CaBagE 是一种快速富集方法,可以阐明人类疾病背后的“隐藏基因组”区域。
专门研究长阅读的测序和表观遗传分析,我们使用牛津纳米孔技术,从多功能小兵到高通量的Promethion 24,在基因组组装中提供高分辨率,EDNA以及DNA甲基化研究。我们的设施也使用Bionano的Saphyr平台在结构变化检测中表现出色,从而发现全基因组的洞察力对复杂的遗传结构。
在战斗中做什么给对手造成尽可能多的伤害,以便他们空虚。确定范围之前:播放撕裂路标,以增加其余战斗的强度。操纵:您真的希望每一轮战斗的范围都接近,因为您的罢工仅在该距离上有效。因此,如果对立的奴才对远距离进行操作,则可以通过追击或大满贯进行近距离操作。不朽的抓斗:当在战斗中与吸血鬼打击时,您想发送到Torpor,玩不朽的抓斗,以免击打:战斗或罢工:躲闪或使用武器,然后罢工,然后造成比对方吸血鬼有血液更大的伤害。其他罢工:如果您对反对派的第一次罢工造成的损害不足以使它们送往Torpor(或者在对方盟友的情况下燃烧它们),请通过较高的追击或敏捷性来获得额外的打击,并使用它再次与:在Potence