猪作为一种实验动物的流行程度越来越流行,因为它的术语大脑与人类相似。当前,缺乏适当的脑模板来支持功能和结构性介绍管道。这项工作的主要贡献是从迭代,非线性登记为70至7个月大的雄性尤卡坦小型杂志的平均体积。此外,这项研究的几个方面是独特的,包括比较线性和非线性模板生成的比较,大型且均匀的队列的表征,平均后有效分辨率的分析以及对潜在的模板偏差的评估以及与另一个Minipig种类的模板的比较,并使用“左外”验证。我们发现,在高度均匀的队列中,非线性登记产生了更好的模板,但仅略有。尽管我们的T1加权数据是分辨率有限的,但我们保留了在多主体平均值中的有效分辨率,这会产生具有较高灰白质对比度的模板,并且与替代的Minipig模板相比,具有较高的注册精度。
尽管经过多年研究,爆炸引起的冲击波与头部相互作用是否会对人脑造成损伤仍是未知数。填补这一空白的一种方法是使用动物模型建立“缩放定律”,将观察到的动物脑损伤投射到人类身上。这需要实验室实验和动物头部的高精度数学模型,以建立实验观察到的爆炸引起的脑损伤与模型预测的生物力学反应之间的相关性。为此,我们对哥廷根小型猪进行了实验室实验,以开发和验证小型猪头部的三维 (3-D) 高精度有限元 (FE) 模型。首先,我们对哥廷根小型猪进行了实验室实验,以获得脑血管网络的几何形状,并表征脑组织和血管材料在爆炸暴露典型的高应变率下的响应特性。接下来,我们利用详细的脑血管信息以及物种特异性脑组织和血管材料特性,开发了小型猪头部的 3-D 高精度 FE 模型。然后,为了验证模型预测结果,我们进行了实验室冲击波管实验,即将哥廷根小型猪置于实验室冲击波管中 210 kPa 的爆炸过压下,并比较两个位置的脑压。我们观察到模型预测的压力与实验测量值之间有很好的一致性,最大压力的差异小于 6%。最后,为了评估脑血管网络对生物力学预测的影响,我们进行了模拟,比较了有和没有血管的 FE 模型的结果。如预期的那样,加入血管可以减轻脑部压力,但不会影响脑压的预测。然而,我们观察到,在模型中加入脑血管后,血管与脑组织界面附近区域的应变分布发生了高达 100% 的变化,这表明血管不仅会降低应变,还会导致剧烈的重新分布。这项工作将有助于建立观察到的脑损伤与预测的生物力学反应之间的相关性
本演讲包含涉及Edgewise Therapeutics,Inc。的实质性风险和不确定性的前瞻性陈述(“ Edgewise”或“ Company”)。本演讲中包含的历史事实陈述以外的所有陈述,包括有关我们未来的财务状况,运营成果,业务战略和计划的陈述,以及对未来运营的管理目标以及有关行业趋势的陈述,都是前瞻性陈述。这种前瞻性陈述包括有关Edgewise的药物发现平台的潜力和期望的陈述; Edgewise的候选产品和计划,包括EDG-7500; EDG-7500的此类里程碑的预期里程碑和时间安排,包括EDG-7500和临床试验数据报告的预期时间;关于Edgewise产品候选产品的市场机会的陈述;有关Edgewise产品候选和计划的管道的陈述;以及有关Edgewise财务状况(包括其流动性)的声明。在某些情况下,您可以按术语识别前瞻性陈述,例如“估算”,“打算”,“五月”,“计划”,“潜在”“威尔”或这些术语或其他类似表达式的否定。
目的是1)表征代谢综合征的Gottingen Minipig模型,涉及其结肠微生物群和循环微生物产物,以及2)评估卵巢切除的女性和cast割的雄性少女是否显示出相似的表型。根据性别和饮食,将二十四个9周龄的gottingen Minipig分配给四组:卵巢饮食和castrated的雄性,喂食食物或高脂饮食(HFD)12周。在研究结束时,测量了身体成分和血浆生物标志物,并进行了混合饮食耐受性测试(MMT)和静脉葡萄糖耐受性测试(IVGTT)。与CHOW组相比,HFD组的体重增加,脂肪百分比,空腹血浆胰岛素和胰高血糖素的体重显着更高。胰岛素抵抗指数(HOMA-IR)的稳态模型增加,并从MMT中降低了来自MMT的IVGTT和Matsuda的胰岛素敏感性指数的葡萄糖有效性。HFD组表现出血脂异常,总,LDL-和HDL-胆固醇显着增加,HDL/非HDL胆固醇比降低。HFD Minipigs的结肠微生物群显然与精益控制(Gunifrac Distance Matrix)不同。驱动这种分离的主要细菌家族是梭状芽胞杆菌科,纤维细菌科,黄霉菌科和卟啉单核科。此外,HFD显着降低了物种丰富度。此外,HFD降低了短链脂肪酸和有益的微生物代谢物的循环水平,黄氨酸和trigonelline,同时增加了分支链氨基酸的水平。分别在肝脏和肝脂肪组织中分别差异地表达了六个和九个征用相关的基因。HFD喂养的猪伴有代谢综合征,肠道微生物营养不良以及健康肠道微生物产物的明显降低,因此与人类肥胖和胰岛素耐药性相似。
乙醇乙醇酰胺(OEA)是一种安全的生物活性脂质,在临床和临床模型中表现出强大的厌食性特性。为了评估OEA递送动力学对其厌食的重要性,我们开发了含有液体或半固体形式的含OEA的乳制品零食。OEA +液体零食,但不是半固体的零食,在摄入零食后4小时进行的饮食行为测试中,分别减少了正常体重和肥胖的小型摄食量的14%和18%。体外消化实验表明,与半固体结构相比,当小吃是液体时,肠道消化中的OEA释放大大增强。对液体零食摄入后几个血浆参数的动力学研究表明,取决于微小的重量状态,其潜在机制不同,而OEA +液体零食可能对内源性大麻素和其他相关的N-酰胺氨基胺代谢的影响在正常体重小型肥胖症和肥胖症中的动力生成中的作用。
皮层电图 (ECoG) 是一种微创方法,在临床上经常用于绘制大脑致痫区域图并促进病变切除手术,并且在脑机接口应用中得到越来越多的探索。当前的设备存在局限性,需要在皮层表面覆盖率、空间电极分辨率、美观度和风险后果之间进行权衡,并且通常将映射技术的使用限制在手术室中。在这项工作中,我们报告了一种可扩展的技术,用于制造大面积软机器人电极阵列,并通过平方厘米的钻孔使用压力驱动的致动机制(称为外翻)将其部署在皮层上。可部署系统由多达六条预折叠的软腿组成,并使用水性加压溶液将其放置在皮层的硬膜下,并固定在小开颅边缘的基座上。每条腿都包含柔软的微加工电极和应变传感器,用于实时部署监控。在一项概念验证急性手术中,一个软机器人电极阵列被成功部署在一只小型猪的皮层上,以记录感觉皮层活动。这种软机器人神经技术为微创皮层手术和与运动和感觉缺陷等神经系统疾病相关的应用开辟了有希望的途径。
摘要:在Gottingen Minipig中开发一种植入术模型,并评估局部在健康,代谢综合征(MS)和2型糖尿病(T2DM)受试者中局部应用水杨酸聚(SAPAE)(SAPAE)(SAPAE)(SAPAE)(SAPAE)对种植体周围炎的进展。将十八只动物分配给三组:(i)对照,(ii)MS(肥胖诱导饮食)和(iii)T2DM(饮食加上链霉菌素作为T2DM诱导)。上颌和下颌骨前磨牙和第一磨牙。愈合3个月后,将每侧四个植入物放在每只动物的两个下颌中。2个月后,使用丝绸连字的牙菌斑诱导植入植入术。sapae聚合物与矿物油(3.75 mg/μl)混合,并局部涂抹长达60天,以停止植入植入术的进展。牙周探测随着时间的推移评估袖珍深度,然后对收获样品进行了组织形态学分析。所采用的方案导致植入植入术的发作,健康的小型植物的长度是相对于MS和T2DM受试者(〜3.0 mm)达到相同水平的探测深度,而与JAW无关。在定性分析中,Sapae治疗显示正常血糖,MS和T2DM组的炎症水平降低。sapae应用在治疗约15天后显着降低了种植体炎的进展,所有全身性条件的探测深度降低了30%,对照组和SAPAE组之间的探测深度相似。MS和T2DM条件提出了植入物周围的口袋深度的更快进展。sapae治疗降低了健康,MS和T2DM组的植入术进展。关键字:牙科植入物,骨整合,植入术,治疗,代谢疾病
摘要:脑机接口 (BCI) 依赖于电极和神经元之间的接口来发挥作用。大脑中对电极的反应产生的异物反应 (FBR) 会改变该接口,并可能污染检测到的信号,最终阻碍 BCI 功能。FBR 的大小受本综述探讨的几个关键因素的影响;即 (a) 测试动物的大小、(b) BCI 的解剖位置、(c) 电极的形态和涂层、(d) 电极插入的力学原理和 (e) 药理学修饰(例如药物洗脱电极)。试验降低体内 FBR 的方法(特别是在大型模型中)对于进一步应用于人类非常重要,我们系统地回顾了这方面的文献。我们搜索了 OVID、MEDLINE、EMBASE、SCOPUS 和 Scholar 数据库。对汇总结果进行了定性分析。在 8388 篇论文中,有 13 篇被纳入分析,其中大多数排除的研究都是在小鼠模型上进行的实验。实验对象包括猫、兔子和各种品种的小型猪/狨猴。平均而言,在干预组中,死后组织学中 FBR 的炎症细胞减少了 30% 以上。与啮齿动物模型中使用的策略类似的策略,包括尖端修改和柔性正弦电极配置,都在组织学中产生了良好的效果;然而,值得注意的是,缺乏研究对 BCI 终末功能的影响的试验。未来的研究应评估 FBR 的减少是否与预期 BCI 功能效果的改善相关。
第 7 层皮质接口:一种可扩展且微创的脑机接口平台 Elton Ho 1*、Mark Hettick 1*、Demetrios Papageorgiou 1、Adam J. Poole 1、Manuel Monge 1、Maria Vomero 1、Kate R. Gelman 1、Timothy Hanson 1、Vanessa Tolosa 1、Michael Mager 1、Benjamin I. Rapoport 1 + 1 Precision Neuroscience Corporation,美国纽约州纽约市和加利福尼亚州旧金山市 * 这些作者对本文的贡献相同 + 通讯作者 摘要 脑机接口的发展进展标志着在各种疾病状态下恢复、替换或增强丢失或受损的神经功能的潜力。现有的脑机接口依赖于侵入性手术或穿脑电极,这限制了该技术的可寻址应用和符合条件的患者数量。本文描述了一种构建神经接口的新方法,包括可适形薄膜电极阵列和微创手术输送系统,它们共同促进了与大部分皮质表面的双向通信(可同时进行记录和刺激)。我们证明了将包含超过 2,000 个微电极的可逆植入物同时快速输送到哥廷根小型猪大脑两个半球的多个功能区域的安全性和可行性,无需开颅手术,有效插入速率快于每通道 40 毫秒,不会损坏皮质表面。我们进一步展示了该系统在高密度神经记录、局部皮质刺激和精确神经解码方面的性能。这样的系统有望加速更好地解码和编码神经信号的努力,并扩大可从神经接口技术中受益的患者群体。