尽管经过多年研究,爆炸引起的冲击波与头部相互作用是否会对人脑造成损伤仍是未知数。填补这一空白的一种方法是使用动物模型建立“缩放定律”,将观察到的动物脑损伤投射到人类身上。这需要实验室实验和动物头部的高精度数学模型,以建立实验观察到的爆炸引起的脑损伤与模型预测的生物力学反应之间的相关性。为此,我们对哥廷根小型猪进行了实验室实验,以开发和验证小型猪头部的三维 (3-D) 高精度有限元 (FE) 模型。首先,我们对哥廷根小型猪进行了实验室实验,以获得脑血管网络的几何形状,并表征脑组织和血管材料在爆炸暴露典型的高应变率下的响应特性。接下来,我们利用详细的脑血管信息以及物种特异性脑组织和血管材料特性,开发了小型猪头部的 3-D 高精度 FE 模型。然后,为了验证模型预测结果,我们进行了实验室冲击波管实验,即将哥廷根小型猪置于实验室冲击波管中 210 kPa 的爆炸过压下,并比较两个位置的脑压。我们观察到模型预测的压力与实验测量值之间有很好的一致性,最大压力的差异小于 6%。最后,为了评估脑血管网络对生物力学预测的影响,我们进行了模拟,比较了有和没有血管的 FE 模型的结果。如预期的那样,加入血管可以减轻脑部压力,但不会影响脑压的预测。然而,我们观察到,在模型中加入脑血管后,血管与脑组织界面附近区域的应变分布发生了高达 100% 的变化,这表明血管不仅会降低应变,还会导致剧烈的重新分布。这项工作将有助于建立观察到的脑损伤与预测的生物力学反应之间的相关性
压力性尿失禁的细胞疗法括约肌复合体控制着节制和排尿。这是一个复杂的过程。为了保持节制,膀胱肌肉必须放松,同时括约肌必须紧闭。排尿时,膀胱需要有控制的收缩,而括约肌必须放松。此外,节制必须在没有大脑有意识的神经控制的情况下发挥作用。这是通过神经、激素、平滑肌组织和横纹肌的相互作用实现的。因此,不同的基于细胞的临床前和临床研究旨在解决这些调节节制的不同组成部分。向括约肌复合体注射骨骼肌细胞针对的是缺陷的横纹括约肌,称为横纹括约肌。这是我们在清醒和直立时主动控制的肌肉。注射间充质基质细胞旨在支持受伤括约肌的自我修复。这可能包括改善血管化、抑制纤维化、再生周围神经、横纹肌和括约肌复合体的平滑肌组织。平滑肌称为滑括约肌,对于睡眠时的节制很重要。因此,在我们的临床前动物研究中,我们研究了两种细胞疗法。