1。简介53 6.3。引力光子 - Photon和Photon -2。线性重力场的量化54标量粒子散射91 2.1。线性近似54 6.4。在外部重力2.2中的光弯曲。GUPTA 56 FIELD 94 2.3的量化方案。补充条件58 7。将无旋转颗粒an灭为Gravitons 95 2.4。相互作用中的重力场59 8。重力 - 粒子顶点,质子 - 中子2.5。温伯格的无质量质量差异和相关问题的理论97粒子60 9.重力生殖器101 3。计算图表66 9.1的规则。静态外部4。从粒子的重力产生 - 抗颗粒重力场101歼灭70 9.2。类型7 + E -E + G 103 4.1的过程。电子 - 位置歼灭70 93。静态电磁5。〜Bremsstrahlung 74字段104 5.1。温伯格的公式〜10。同步辐射110 5.2。引力来自太阳8011。重力辐射的地面源110 5.3。中子星中的Bremsstrahung 81 11.1。引起的引力110 5.4的发射。带有引力11.2的雷神Bremsstrahlung。超辐射状态113散射82 11.3。连续产生引力5.5。带有库仑梁114散射84 11.4的Graviton Bremsstrahlung。刺激了相干的产生6。引力和重力散射的散射86重力辐射116 6.1。无旋性11.5对重力的散射。固体中的晶格振动119颗粒86 12。天体物理兴趣的结果121 6.2。中微子的重力散射88参考123
[1]。然而,Frenet 框架在应用中有几个缺点。例如,在曲率消失的地方,Frenet 框架都是未定义的。此外,Frenet 框架的主要缺点是它绕切向量有不良的旋转 [6, 18]。因此,Bishop [5] 引入了一种沿空间曲线的新框架,它更适合应用。但众所周知,Bishop 框架的计算并不是一件容易的事 [29]。为了构造 3D 曲线偏移,Coquillart [9] 引入了空间曲线的拟法向量。拟法向量为曲线的每个点都有定义,并且位于垂直于该点曲线切线的平面上 [24]。然后利用拟法向量,Dede 等人在 [11] 中引入了沿空间曲线的 q 框架。给定空间曲线 α ( t ),q 框架由三个正交向量组成,分别是单位切向量 t 、准法向量 nq 和准双法向量 bq 。q 框架 { t , nq , bq , k } 由下式给出
摘要。两个椭球集的闵可夫斯基和与差一般不是椭球形的。然而,在许多应用中,需要计算在某种意义上近似闵可夫斯基运算的椭球集。在本研究中,考虑了一种基于所谓椭球微积分的方法,该方法提供了参数化的外部和内部椭球族,可以紧密近似于闵可夫斯基椭球的和与差。近似沿方向 l 是紧密的,因为椭球在 l 上的支撑函数等于和与差在 l 上的支撑函数。然后可以根据相应椭球的体积或迹的最小(或最大)测量值来选择基于外部(或内部)支撑函数的近似。建立了利用欧几里得几何或黎曼几何对两个正定矩阵的闵可夫斯基和与差的基于体积的近似及其均值之间的联系,这也与它们的 Bures-Wasserstein 均值有关。
本文介绍了一种基于闵可夫斯基数学相似性的新型聚类方法,以改进用于分类的EEG特征选择,并在机器学习的背景下实现高效的粒子群优化(PSO)。鉴于高维医学数据集的复杂性,特征选择在预防疾病和促进公共健康方面起着至关重要的作用。通过采用闵可夫斯基聚类,目标是将数据集记录分组为两个具有高特征一致性的聚类,从而通过应用 PSO 等优化技术来选择最优特征,从而提高准确性。此外,所提出的模型可以扩展到智能数据集,包括EEG和其他数据集。由于精确分类所需的特征较少,因此智能特征选择是机器学习的一个高级步骤。本文研究了影响波恩大学EEG数据集中特征选择的关键因素。将所提出的系统与各种优化和特征选择方法进行了比较,结果表明,在基于准确度测量分析和分类EEG信号方面具有卓越的性能。实验结果证实了所提出的模型作为脑电图数据分类的有用工具的有效性,准确率高达 100%。这项研究的成果有可能通过简化识别和诊断脑部疾病的过程,使相关专业的医学专家受益。从技术上讲,机器学习算法 RF、KNN、SVM、NB 和 DT 用于对选定的特征进行分类。
本文介绍了一种使用 Minkowski-Sierpinski 分形技术和基片集成波导 (SIW) 在 60 GHz 谐振的新型贴片天线设计。该天线拟用于无线体域网应用 (WBAN)。所提出的天线采用 Rogers 5880 基片实现,其介电常数 (ε r ) 为 2.2,损耗角正切为 0.0004,基片高度为 0.381 mm。计算机仿真技术 - 微波工作室 (CST-MW) 用于仿真所提出的天线。仿真结果显示,在 (58.3-61.7) GHz 范围内具有 3.5 GHz 的宽带宽,回波损耗大于 -10 dB。模拟增益为 7.9 dB,线性天线效率为 91%。所提出的天线用于改善 WBAN 应用的毫米波 (mm-Wave) 频段的辐射方向图、带宽和增益的质量。
首先,我们解释时空和度量场作为基本概念的一些模糊性。然后,从 Unruh 效应的角度,使用 Gelfand–Naimark–Segal 构造,我们构造一个算子作为加速量子,我们称之为量子加速算子 (QAO)。随后,我们研究了 Minkowski 空间中两个不同框架的真空之间的关系。此外,我们表明,通过将这样的 QAO 应用于 Minkowski 真空,可以获得 Minkowski 空间中每个加速框架的真空。此外,利用这些 QAO,我们增强了希尔伯特空间,然后提取了 Minkowski 时空一般框架的度量场。在这种方法中,这些概念通过构造的 QAO 从希尔伯特空间中出现。因此,这种增强的希尔伯特空间在一般框架中包含了量子场论,可以被视为基本概念,而不是经典度量场和标准希尔伯特空间。
已经投入了很大的效果,用于研究量子化学[1-4],凝结物理学[5-7],宇宙学[8-10]以及高能量和核物理学[11-16]的问题[11-16],具有数字量子计算机和模拟量子模拟器[17-22]。一个主要的动机是加深我们对密切相关的多体系统(例如结合状态的光谱)的基态特性的传统棘手特征的理解。另一个是推进散射问题的最新技术,这些问题提供了有关此类复杂系统的动态信息。在这项工作中,我们的重点将放在相对论量子场理论中为高能量散射和多粒子产生的量子算法的问题。我们的工作是在量子铬动力学(QCD)中提取有关Hadron和Nuclei的性能的动态信息的有前途但遥远的目标。QCD中量子信息科学可以加速我们目前的组合能力是核多体系统中的低能量散射的 在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。QCD中量子信息科学可以加速我们目前的组合能力是核多体系统中的低能量散射的 在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。量子设备有可能克服经典计算机在解决上述许多问题时的局限性。目前的限制是,散射问题涉及大量的空间(动量)和时间(能量)尺度,并要求对大量(局部)量子型操作员进行量子模拟。当今NISQ ERA技术仅限于几十个未纠正的量子台上的NISQ ERA技术具有挑战性[22]。正如约旦,李和普雷基尔[44,45]在精液论文中所讨论的那样,量子模拟相对论量子型理论中的散射问题需要晶格离散化,而在骨质理论的情况下,则是field eld opertor的局部希尔伯特空间的截断。从广义的重归化组(RG)的意义上[46]的意义上,可以将这种数字化视为定义低能量效能理论的定义。我们将在这里争论,从这个角度来看,数字化方案不一定需要基于本地运算符的分解,而是更多
众所周知,纠缠在量子场论中广泛存在,具体含义为:每个 Reeh-Schlieder 态都包含任意两个空间分离区域之间的纠缠。这尤其适用于闵可夫斯基时空中无相互作用的标量理论的真空。场论中关于纠缠的讨论主要集中在包含无限多个自由度的子系统上 — — 通常是在紧凑空间区域内支持的场模式。在本文中,我们研究 D + 1 维闵可夫斯基时空中的自由标量理论中由有限个场自由度组成的子系统中的纠缠。关注场的有限个模式是受真实实验有限能力的驱使。我们发现有限维子系统之间的纠缠并不常见,需要仔细选择模式的支持才能出现纠缠。我们还发现纠缠在高维中越来越稀疏。我们得出结论,闵可夫斯基时空中的纠缠并不像通常认为的那么普遍。
在4维Minkowski空间,Lorentz标量,4个矢量和4个量的正交转换中,Minkowski空间中的4次量,协变形式的力学法律以及适当的时间间隔,4个矢量位置,4个矢量的位置,4个载体速度和4个载体的速度和4个载体的力量,纽顿的力量的形式相互关系,相互关系,相互关系。结果:学生将能够记住并得出四个矢量符号中的哈密顿力学,小振荡,规范变换,僵化的身体动力学和相对论力学的各种公式。他们将能够分析各种概念并解决与所获得的知识有关的问题。将所学的机械配方应用于不同主题的实践物理/科学问题,并了解其局限性及其对量子力学的影响。教科书: