DMTR 工作组由 NASA 的 ExEP 于 2023 年 2 月发起,旨在尽早开始为空间日冕仪最具挑战性的组件——可变形镜系统提供技术路线图。以下是取得的成就:• 完成了“DM 性能目标的初步确定”,可用作供应商的临时要求,直到未来的飞行任务可以确定它们。它们涵盖:(1) 执行器数量、(2) 执行器稳定性、(3) 执行器分辨率、(4) 执行器行程、(5) 执行器螺距、(6) 残余 WFE、(7) 执行器产量和 (8) 飞行路径• 更新了 2022 年 DM 供应商调查,确定了三个有前途的候选供应商——AOA Xinetics 的电致伸缩 DM、Boston Micromachines 的静电 MEMS DM 以及法国公司 ALPAO 及其磁性 DM。 • 访问了所有三家 DM 供应商的制造工厂 • 收到了三大供应商对临时需求文件的初步回应和反馈。
镜像检测对于避免在计算机视觉任务中对反射对象的虚假识别具有重要意义。iSting镜像检测框架通常遵循超级视为的设置,这在很大程度上取决于高质量的标签,并且概括不良。为了解决这个问题,我们改为提出了第一个弱监督的镜像检测框架 - 还提供了第一个基于涂鸦的镜像数据集。具体来说,我们重新标记10,158张图像,其中大多数标记的像素比小于0.01,仅需大约8秒即可标记。考虑到镜像区域通常显示出很大的尺度变化,并且也不规则且被阻塞,从而导致不完整或过度检测的问题,因此我们提供了局部全球特征增强(LGFE)模块,以充分捕获上下文和细节。此外,很难使用涂鸦注释获得基本的镜像结构,并且未强调前景(镜像)和背景(镜子)和背景(非摩尔)特征之间的区别。因此,我们提出了一个前景感知的面具(FAMA),将镜面边缘和语义效果整合起来,以完成镜像区域并抑制背景的影响。最后,为了提高网络的鲁棒性,我们提出了原型对比度损失(PCL),以学习跨图像的更通用的前景特征。实验实验表明,我们的网络表现优于相关的最新监督方法,甚至超过一些完全监督的方法。数据集和代码可在https://github.com/winter-flow/wsmd上找到。
引用:VerónicaBenavidezMagister。“”学习镜:镜像神经元如何塑造我们的学习能力”。ACTA科学神经病学7.4(2024):25-38。
组装大型空间结构意味着将模块化组件有序地组装在一起,这由指示每个部件相对定位的高级总体规划决定。在空间应用中,常见的机器人系统在执行任务方面具有较低的自主性。操作通常依赖于远程命令,这需要为操作员提供适当的反馈渠道,通常会受到相当大的时间延迟的影响。共享自主性的概念提高了此类机器人系统的灵活性,并减少了操作员在复杂任务中的工作量。尽管如此,由于组装任务的精细度,远程操作方法在组装复杂结构时使用有限,因为操作员命令和机械手动作的同步会消耗
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年1月5日发布。 https://doi.org/10.1101/2024.01.05.574287 doi:Biorxiv Preprint
镜像检测是计算机视频中的一个主动研究主题。但是,所有现有的镜像探测器都从大规模像素的数据集中学习镜像代表,这些数据集乏味且获得昂贵。尽管在相关主题中广泛探索了弱监督的学习,但我们注意到流行的弱监督信号(例如,边界框,涂鸦,点)仍然需要用户的一些努力来定位目标对象,并以强烈的假设是,注释的图像始终包含目标对象。这样的假设可能会导致miror子的过度分割。我们对这项工作的关键思想是,在一段时间内,伴侣的存在可能是较弱的监督,以训练镜像探测器,原因有两个。首先,如果网络可以预测镜子的存在,则可以从本质上找到镜子。第二,我们观察到镜子的反射内容往往与相邻帧中的内容相似,但与遥远框架的区域形成了鲜明的对比(例如,非MIRROR框架)。在本文中,我们提出了Zoom,这是从视频中人均零镜像指示器的极度弱势注释中学习强大镜像表示形式的第一种方法。缩放的关键见解是在时间变化中对相似性和对比度进行建模,以定位和分割mir or。为此,我们提出了一种新颖的融合策略,以利用镜像定位的时间一致性信息,以及一个新颖的时间相似性对比模型模型用于镜像分割。我们构建了一个新的视频镜数据集,以进行培训和评估。在新的和标准指标下的实验结果表明,Zoom对现有的全面监督镜像检测方法的性能有益。
新加坡(2023年11月23日) - 11月25日在Artscience博物馆停靠:红色镜子将通过12,000年的文化,艺术,历史和科学在远古时代到今天的火星,在这一世界外探险中启动游客。这是红色星球上最全面的历史和文化展览,登陆新加坡,其中包含300多个物体,包括重要的历史文物,稀有的科学手稿,电影,当代艺术品,甚至是正宗的火星陨石。Mars曾经是千年来迷恋的主题,因此捕捉了人类的想象力,就像其他星球一样。来自世界各地的太空机构正在积极探索火星,目前在地球上进行了三个活跃的漫游者任务,并在地平线上进行了几项载人太空任务。火星:红色的镜子通过将开创性的科学家,现代专家,电影制片人,作家和当代艺术家的叙述汇集在一起,反映了人类与红色星球的持久联系,他们一直在各种文化中探索火星。MARS于2021年首次在西班牙出现:红色镜子由巴塞罗那当代文化中心(CCCB)的Juan Insua策划。这次展览在Artscience博物馆的亚洲首映将其重点转移到了亚洲 - 从中国古代,印度和日本展示了火星的描述,即强调了开创性的亚洲天文学家的作品,并洞悉了东南亚流行文化火星的刻画。强调亚洲提供了展览还展示了来自亚洲各地的太空机构如何在科学上探索火星,包括新加坡自己的太空学院和日本航空航天勘探局(JAXA)。
空间FSM开发的光学通信的主要挑战是提出技术和供应链,与大量新空间方法相关,这需要对高速互联网,地球行星观察和监测以及移动性应用的安全连通性。CTEC提出了一种Mini-FSM技术,可提供+/- 6 MRAD的中风和1700 Hz的谐振频率,质量为50 gr。这种FSM机制是巨型星座以及板纳米人和立方体上所有应用的良好候选者,具有非常高的小型化水平,并且针对新的空间高量成本效率进行了优化。使用压电执行器的使用提供了很高的共振频率,以实现最佳控制,几乎零功耗的步骤和保持指向,并且在CTEC的optronics应用程序的多年反复制造中,非常高的可靠性数字> 0,995。1简介
本文讨论了俄罗斯入侵乌克兰的观察和影响。尽管称其为“经验教训”有些鲁莽,但第二次世界大战以来欧洲最激烈的战斗提供了一些见解,应该为国防理论、装备和训练提供参考。首先,战争仍然是一种昂贵的消耗性活动,军队需要耗费大量的装备、弹药和补给。由于现代武器需要高科技制造,因此它们比以前的设备需要更多时间;大规模生产它们很困难,库存和部署它们所需的能力至关重要。其次,训练有素的部队仍然比技术或物资不对称更重要。意志力很重要。1 俄罗斯最初的入侵似乎是以大规模部署来克服训练和后勤不足为前提的,但未能抵挡住乌克兰军队和平民的有效抵抗,而这种抵抗部分是由北约自 2014 年以来提供的援助和训练所建立起来的。俄罗斯训练和部队结构中的问题加剧了战备报告系统的缺陷,该系统因无能、裙带关系和恐惧而受到破坏。第三,安全、分布式和冗余通信系统的扩散增强了信息收集的能力,同时允许部队保持分散和灵活性(如果使用得当)。现代通信网络增加了对错误的惩罚,这种趋势可以追溯到第一次世界大战。现代战场会让进攻机动变得乏味,除非得到欺骗行动的充分支持。传感器、无人机系统、便携式导弹和远程火力的激增使得战场对于难以隐藏的机械化车辆来说越来越致命。2
摘要 - 电流镜是在Mi-Croelectronics中广泛使用的电路,尤其是在模拟IC设计中。它们作为原理是输出节点处参考电流的复制品的生成。本文旨在对NMOS电流镜的不同拓扑,特别是简单的电流镜,cascode电流镜和Wilson Current Mirror进行比较研究。我们分析了它们有关晶体管的通道宽度(W)和工作温度的电气特征。Cadence Virtuoso被用作模拟工具,目标过程技术为130 nm。结果,我们发现,通过增加晶体管的W,最小输出电压会降低。此外,我们注意到三个拓扑中的温度比输出电流产生的影响。最后,可以得出结论,当前的镜子遵循了主要文献的预期模式,并朝着代表命令MOSFET晶体管的主要方程式的方向融合。索引项 - cascode电流镜,简单电流镜,Wilson Current Mirror。