这篇本科论文由 eGrove 的荣誉学院 (Sally McDonnell Barksdale 荣誉学院) 免费提供给您,供您免费访问。它已被 eGrove 的授权管理员接受并纳入荣誉论文。有关更多信息,请联系 egrove@olemiss.edu。
第1章引入高可用性和灾难恢复。。。。。。。。。。。。。。。。。。。1 1.1高可用性和灾难恢复简介。。。。。。。。。。。。。。。。。。。。。。。。。。。2 1.1.1容错。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 1.1.2停机时间。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>4 1.1.3单点故障。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5 1.2关键恢复目标。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。7 1.3连续操作,连续可用性和业务连续性。。。。。。。。。。。。8 1.3.1连续操作。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 1.3.2连续可用性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 1.3.3业务连续性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 1.4高可用性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 1.4.1虚拟机或LPAR重新启动。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 1.4.2聚类解决方案。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 1.4.3应用或DB复制。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>10 1.4.4扩展解决方案。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>10 1.5灾难恢复。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。10 1.5.1将HA扩展到DR时要考虑的因素。。。。。。。。。。。。。。。。。。。。。。。。。。。13 1.5.2 VM重新启动管理器与DR。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 15 1.5.3与DR聚类。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。13 1.5.2 VM重新启动管理器与DR。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 1.5.3与DR聚类。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 1.6云和混合云灾难恢复。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 1.6.1 IBM云中的IBM功率。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 17 1.7评估和设计连续操作。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。16 1.6.1 IBM云中的IBM功率。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 1.7评估和设计连续操作。。。。。。。。。。。。。。。。。。。。。。。。。。。19 1.7.1管理和HADR环境中的问题。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 1.7.2比较选项。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22
反映神经元被认为是与他人建立联系的能力,而不是有意识的水平,通过模仿,理解和提供帮助来学习;共情。这些连接不是直接的,而是根据一个人的经验进行介导的[1]。镜像神经元在儿童时期很重要,它们对于学习和获取新技能非常重要。他们参与思考,计划,控制和记忆。如果孩子观察到动作,镜像神经元将激活并形成新的神经联系,就好像他或她亲自进行了动作一样。镜像神经元的有效功能可在任何领域,更大的情绪智力和更高的同理心[1]带来出色的发展。
摘要:镜像疗法 (MT) 可帮助中风幸存者恢复运动功能。先前的研究报告称,个体的运动意象能力与运动意象期间的大脑活动区域以及运动意象训练的有效性有关。然而,镜像疗法与运动意象能力之间的关系以及镜像凝视期间皮质脊髓束兴奋性(MT 的重要组成部分)与运动意象能力之间的关系尚不清楚。本研究确定凝视镜子时的运动诱发电位 (MEP) 幅度是否与参与者的运动意象能力有关。招募了 24 名健康的右利手成年人(7 名男性)。在凝视镜子时进行经颅磁刺激,并测量右手第一背侧骨间肌的 MEP。使用运动和视觉意象问卷 (KVIQ) 测量运动意象能力,该问卷评估运动意象能力的生动性。此外,还使用心理计时 (MC) 任务来评估时间方面。结果显示,与静息条件下相比,凝视镜子时 MEP 振幅值的变化与 KVIQ 评估分数之间存在显著的中等相关性。这项研究表明,因镜子凝视而引起的皮质脊髓兴奋性可能与运动想象能力的生动性有关。
背景和目标:本文首次设计并介绍了一种基于电流镜和折叠级联拓扑组合的新型折叠镜 (FM) 跨阻放大器 (TIA) 结构。跨阻放大器级是接收器系统中最关键的构建块。这种新型拓扑基于电流镜拓扑和折叠级联拓扑的组合,采用有源元件设计。其理念是在输入节点使用电流镜拓扑。在所提出的电路中,与许多其他已报道的设计不同,信号电流(而不是电压)被放大直到到达输出节点。由于使用二极管连接的晶体管作为电流镜拓扑的一部分,所提出的 TIA 具有低输入电阻的优势,这有助于隔离主要输入电容。因此,以相当低的功耗实现了 5Gbps 的数据速率。此外,设计的电路仅使用了六个有源元件,占用的芯片面积很小,同时提供 40.6dBΩ 的跨阻抗增益、3.55GHz 频率带宽和 664nArms 输入参考噪声,并且仅消耗 315µW 功率和 1V 电源。结果证明了所提出的电路结构作为低功耗 TIA 级的正确性能。方法:所提出的拓扑基于电流镜拓扑和折叠级联拓扑的组合。使用 Hspice 软件中的 90nm CMOS 技术参数模拟了所提出的折叠镜 TIA 的电路性能。此外,对晶体管的宽度和长度尺寸进行了 200 次蒙特卡罗分析,以分析制造工艺。结果:所提出的 FM TIA 电路提供 40.6dBΩ 跨阻增益和 3.55GHz 频率带宽,同时使用 1V 电源仅消耗 315µW 功率。此外,由于分析通信应用中接收器电路中输出信号的质量至关重要,所提出的 FM TIA 对于 50µA 输入信号的眼图打开约 5mV,而对于 100µA 输入信号,眼图垂直打开约 10mV。因此,可以清楚地显示眼图的垂直和水平开口。此外,跨阻增益的蒙特卡罗分析呈现正态分布,平均值为 40.6dBΩ,标准差为 0.4dBΩ。此外,FM TIA 的输入电阻值在低频时等于 84.4Ω,在 -3dB 频率时达到 75Ω。通过对反馈网络对输入电阻的影响的分析,得出了在没有反馈网络的情况下,输入电阻可达1.4MΩ,由此可见反馈网络的存在对于实现宽带系统的重要性。结论:本文本文介绍了一种基于电流镜拓扑和折叠级联拓扑组合的跨阻放大器,该放大器可放大电流信号并将其转换为输出节点的电压。由于输入节点存在二极管连接的晶体管,因此 TIA 的输入电阻相对较小。此外,六个晶体管中有四个是 PMOS 晶体管,与 NMOS 晶体管相比,它们的热噪声较小。此外,由于前馈网络中未使用无源元件,因此所提出的折叠镜拓扑占用的片上面积相对较小。使用 90nm CMOS 技术参数的结果显示,跨阻增益为 40.6dBΩ,频率带宽为 3.55GHz,输入参考噪声为 664nArms,使用 1 伏电源时功耗仅为 315µW,这表明所提出的电路作为低功耗构建块的性能良好。
抽象使用镜子足够定向,另一只手的运动与另一只手诱导了运动的液化。在这里,我们检验了以下假说:这种镜像现象可以由脑脑摄影(EEG)事件相关的dengronic/同步(ERD/ERS)的基础(EEG)中央alpha节奏(ERD/ERS)(约10 Hz)作为神经物理学的相互作用,以及在糖果中的神经物理学测量,以及在糖果群体之间的相互作用,并在糖果中的互动量。 执行。十八位健康的右手男性参与者在没有镜子(M-)条件下进行了标准听觉触发的单侧(右)或双侧手指运动。在镜子(M +)条件下,在镜子前面进行单侧右手指运动,以诱导同时左手手指运动的幻觉。EEG活性记录在64个头皮电极中,并使用与事件相关的EEG时期进行计算αERD。在M-条件下,在双侧运动中观察到双侧突出的中央αERD,而在单侧右运动中,左中央alpha ERD和右中央alpha ers均观察到。相反,M +条件显示出明显的双侧和广泛的alpha erd dur-
下一代科学标准•1-LS1-1。使用材料通过模仿植物和/或动物如何使用外部零件来帮助它们生存,成长和满足他们的需求,来设计解决人类问题的解决方案。•MS-LS1-3。使用证据支持人体如何是由细胞组组成的相互作用子系统的系统。•MS-LS1-8。收集并综合信息,即感官受体通过向大脑发送消息以立即行为或存储作为记忆来响应刺激。•HS-LS1-2。开发和使用模型来说明相互作用系统的层次结构组织,这些系统在多细胞生物中提供特定功能,例如响应神经刺激的生物运动。•HS-LS1-3。计划并进行调查,以提供证据,表明反馈机制维持体内平衡。•3-LS3-2。使用证据支持特征可能受环境影响的解释。•3-LS4-2。使用证据来构建解释,以解释同一物种个体之间的特征变化如何在生存,寻找伴侣和再现方面具有优势。•HS-LS2-8。评估群体行为对个人和物种的生存和繁殖机会的作用的证据。•K-12科学教育框架:科学与工程实践1,2,3,8
固定的时间。已经使用了几种方案来减少固定时间,并根据所涉及的结构采用了各种技术和方法。目的:在整个系统的审查和荟萃分析中,衡量基于镜像神经元的康复技术的影响。方法:该协议已在Prospero数据库中接受。在Cinahl,Scopus,Medline,Pedro,Otseeker进行了文献搜索。两位作者基于预定义的纳入标准独立鉴定了合格的研究,并提取了数据。使用Jadad量表评估 RCT质量。 结果:筛选了79个合适的研究,仅包括11项定性合成,而四项研究被选择进行定量分析。 四个研究是病例报告/系列,七个是RCT。 九个研究了镜像疗法的效果和2镜像的效果。 Quantitative analyses revealed Mirror Therapy as effective for hand function recovery (mean difference = −14.80 95% Confidence Interval (CI) = −17.22, −12.38) ( p < 0.00001) in the short term, as well as in long follow-up groups (mean difference = −13.11 95% Confidence Interval (CI) = −17.53, −8.69) ( p < 0.00001)。 临床但没有统计,发现了手动敏捷性的功效(p = 0.15),而没有报告运动范围的益处。 结论:基于镜像神经元的康复技术,结合常规职业和物理疗法,在手部创伤中可能是一种有用的方法。RCT质量。结果:筛选了79个合适的研究,仅包括11项定性合成,而四项研究被选择进行定量分析。四个研究是病例报告/系列,七个是RCT。九个研究了镜像疗法的效果和2镜像的效果。Quantitative analyses revealed Mirror Therapy as effective for hand function recovery (mean difference = −14.80 95% Confidence Interval (CI) = −17.22, −12.38) ( p < 0.00001) in the short term, as well as in long follow-up groups (mean difference = −13.11 95% Confidence Interval (CI) = −17.53, −8.69) ( p < 0.00001)。临床但没有统计,发现了手动敏捷性的功效(p = 0.15),而没有报告运动范围的益处。结论:基于镜像神经元的康复技术,结合常规职业和物理疗法,在手部创伤中可能是一种有用的方法。镜像疗法似乎对手部功能恢复有效,但是,对于运动图像和动作观察,没有足够的证据建议其使用。建议进一步研究基于镜像神经元技术在手损伤中的功效。
摘要:日本最近精神疾病的发病率有所上升。被定义为“高敏感人群 (HSP)”。HSP 不是精神疾病的诊断,而是指个人气质。然而,这组特征与注意力缺陷/多动障碍和广泛性焦虑症具有共同特征。HSP 的核心特征是高度的同理心。对一个人的 HSP 状态的评估是通过心理问卷上的自我报告进行的,但由于这些测量依赖于测试者的自我意识,因此这些测量的分数可能不准确。因此,在本研究中,通过使用脑电图测量情绪感染和镜像系统活动来评估同理心。将结果与参与者在高敏感人群量表 (HSPS) 上的得分进行比较。我们发现 HSPS 分数为 100 或更高的参与者表现出 50% 或更高的事件相关去同步 (ERD),表明镜像系统活动。此外,HSPS 评分为 100 或更高的参与者在看到快乐面孔的图像时表现出较低的 alpha 波段功率值。由于 alpha 波与放松的非唤醒状态有关,因此可以推断,快乐的面孔会引发快乐的感觉,增加唤醒并降低 alpha 节律。因此,研究发现 HSPS 评分越高,镜像系统活动和情绪感染的水平就越高。关键词:alpha 节律、情绪感染、ERD、高敏感人群、镜像系统活动 1. 引言
对于现代量子光学的各种应用,无论是在实验学术研究和商业量子技术中,都需要与光学谐振器的量子发射器的强耦合,并且同时在此谐振器中同时长期光子寿命很重要。满足这些实际应用这些要求的一些最有前途的系统是纤维上的微腔[1-4],离子束蚀刻的介电谐振器[5]或微型组装结构[6]。可以通过紧密定位单个腔光子光子(即使腔非常小)来实现量子发射极与光学循环的强耦合。但是,对于大多数逼真的量子信息处理方案,需要从侧面对发射极的光学访问,例如,用于光学冷却[7],状态准备和最终状态读数[8]。,将原子或离子传递到腔内的通道,并且将诱捕结构的整合到腔内可能会对骑士长度施加进一步的约束。在离子陷阱量子计算的情况下[9],形成腔的介电镜还可以散布由于其电敏感性而捕获离子所需的射频频率,并且由于其面部电荷而导致的,如果它们离陷阱电极太近[10,11]。总体而言,因此需要在量子信息应用中使用的光腔,以将强耦合速率与低损失相结合,同时还可以使镜子足够分开。让我们首先审查主参数,以使光谐振器与单个细胞进行强耦合。我们在这里工作的目的是提出一种新方法来实现这些要求,从球形镜的范式转移到与标准高斯模式相比,具有更好的配置属性的工程师光腔模式。在两级发射极之间的相干耦合,例如量子点,离子或冷原子,位于具有光学场模式E(r)的腔坐标为r,其特征是强耦合